
i D Jl2 8 887 ' Kt

llu __

OITII ,
JUL 2 2 9 J

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY o__

Wright-Patterson Air Force Base, Ohio

91 7 1 5

AFIT/GCS/ENG/91-J-OI

DTIC
JUL 2 2 1991

AN ADA BASED EXPERT SYSTEM

FOR

THE ADA VERSION OF SAtool II

THESIS

Min-fuh Shyong
Major, ROCAF

AFIT/GCS/ENG/91-J-OI

91-05717

Approved for public release, distribution unlimited

RE qT DC ' MEi ' -tTION PAGE ° :

AGENCY USE ONLv' . i? , . .R'O, [,T" 3 REPOT TYPI AN + D-ATES CO"ERED

6 June_199 122
4 TITLE AND SUBTITL: 5 FUNDING NUMBERS

An Ada Based Expert System for the Ada Version of

SAtool II (Volume I & II)
u,. ,+,. TiOR(S

Min-fuh Shyong

7 PERFORMING ORGANI?:,T7:3 NAME(Si AIN ADESS(ES) PERFOR%4tNG ORGANIZAT13.
REPOR " NUMBER

Department of Electrical and Computer
ENgineering School of ENgineering, AFIT Ar:T1(;e. 51f
Wrighte-Patterson AFB, OH 45433

£. SPONSORING, MONITO;,',.A- NC-'P E A' 5.
-

A. ADD 5S k % SPONSORING, MONITORING

SOFTWARE ENGINEERING BRANCH (COEE) kGENl'; REPORT NUMSE r,

ROME AIR DEVELOPMENT CENTER
GRIFFISS AFB NY 13411

F. Lamonica

SUPPLEMENTARY NOTS.

12&. DMSTRIBUTION AVA.iAB;' :TY ST1TEIAE" 2D DISTRIBUTION CODE

(Distribution Unlimited

A-. STRACT (Ma,."

This thesis continues the work of implementing the expert system for
the Ada version of SAtool II, an software design requirement analysis
tool. The background, history, design process together with the
design results and validation of the implementation with Ada and
CLIPS/Ada is presented.

Syntax Checking Expert System, SA, SADT, SAtool, 252
SAtool II, ES, CLIPS, CLIPS/Ada.

Uncla sifie - _ -- Un s s U

Unclassified Unclassi fied Unclass ifieu UL____

AFIT/GCS/ENG/91-J- 01

AN ADA BASED EXPERT SYSTEM

FOR

THE ADA VERSION OF SAtool II

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of "7 ... " "

Master of Science (Computer System) :,.

..'. ... -'.

By

Min-fuh Shyong, B.S. D;,t . '" "

Major, ROCAF
Dist

June, 1991 n i

Approved for publ]c release; distribution unlimited

/ ,\

Preface

This thesis continues the work of implementing the expert system for the Ada version of

SAtool-II , which is based on the essential data model of the IDEFo language (16). IDEF0 is a

graphic approach to system description developed by Soffech, Inc. for the U.S. Air Force Program

for Integrated Computer-Aided Manufacturing (ICAM) and is a subset of the Structured Analysis

(SA) language (24) (20). The research goal is to develop an object based Ada CASE tool (SAtool

II) using the abstract data model as the requirements document (16) (28).

The essential subsystem has been developed for future integration with the Ada based, IDEFO

CASE tool, SAtool II, (28). The original SAtool was developed by Steve Johnson (13). D. H. Jung's

explored the idea of performing syntax checking on the SAtool output(14). His research focused

on the prototype development of an IDEFO syntax (language) validation tool which is an expert

system to perform a syntax validation of the IDEF0 diagram. Intack Kim continued research on the

integration of an expert system with SAtool(15). Overlaping with the work of Kim, Terry Kitchen

and Jay Tevis jointly designed the essential model and graphics editor model for the Ada based

SAtool.

The development of this subsystem, as well as SAtool II, is part of ongoing research at the

Air Force Institute of Technology, in association with the Strategic Defense Initiative Organization

(SDIO), on the use of IDEFo as a software requirements modeling methodology. SAtool II has

shown that an Ada based expert system to check the syntax of an IDEF 0 diagram is feasible.

In this thesis, we discuss the design, development, implementation, validation and results of the

continuing research on the expert system. This research is performed to determine the feasibility

of Ada in the development of CASE tools and expert systems and to provide a subsystem that will

be integrated with SAtool II.

I would like to thank the many people who supported me during this research. First of all,

I'd like to express my gratitude to Dr. Gary B. Lamont, my thesis advisor, for his guidance and

inspiration through this research.

I thank my thesis committee memebers, Dr. Thomas C. Hartrum and Capt. Robert J.

Hamrnmell II for their contribution to this thesis.

I would also like to thank Dr. Frank M. Brown and Major Gunsch, who were my AI instructors

and had given me many advices. And Dr. Mark Roth, my course advisor who helped me through

all the efforts. In addition, I thank all the professors, faculties that have helped me either directly

or indirectly to accomplish my effort at AFIT.

My greatest thanks to my parent for their encouragement, and my wife, Jin-rong, whose love,

devotitn, and morale support kept me going through all the long days and nights.

Finally, I want to thank my daughter Chien-huey and son Jiun-yenn, and I will build them

up to understand that knowledge is the source of power, so they will know why daddy is always

studying.

Min-fuh Shyong

iii

Table of Contents

Page

Preface.. ii

Table of Contents iv

List of Figures. vii

List of Tables Vill

1. INTRODUCTION. 1

Background. 1

History. 11

Problem Statement 13

Assumptions. 13

Research Approach 15

Materials and Equipment 16

Scope and Limitations 16

Sequence cf Presentation 16

II. LITERATURE REVIEW 18

Introduction. 18

IDEFo . 1

Introduction to CLIPS 29

Essential Model of the IDEFO Abstract Data Model. 30

Facts utilities 31

CLIPS Working Memory Interface and Rules File. 31

Expert Systems. 32

Integration of Expert Systems with CASE Tools. 32

iv

Page

SAtool with Syntax Validation 33

Specification-Transformation Expert System (STES). 34

Visible Analyst Workbench 35

Summary 36

Ill. REQUIREMENTS ANALYSIS 37

Introduction. 37

Consideration of the Previous Studies 37

Facts Translator Requirements-Essential-Fact-Utilities 38

Retrieve Essential Data Model Information 38

Restore Essential Data Model Information 39

CLIPS-Workinglvlemory-Interface 39

EssentialIO 39

Syntax Checking Expert System Requirements 43

Summary. 45

IV. HIGH LEVEL DESIGN. 46

Introduction. 46

Previous Study Considerations 47

IDEFO Diagram Translator. 47

Retrieve Procedures. 51

Restore Procedures 53

IDEFo Syntax Expert System Components 53

The Inference Engine Selected 53

Knowledge Base 55

Data Base (Working Memory) 56

User Interface. 56

'rest Plan. 57

Summary. 59

v

Page

V. DETAILED DESIGN, IMPLEMENTATION, AND TESTING 61

Introduction 61

IDEF0 Diagram Translator Implementation 61

Expert System Syntax Checking Rules Design 62

IDEFo Diagram Syntax Analysis 64

Syntax Checking Environment 67

Essential Model Facts Format Analysis for Boundary Arrows67

Translation Rules for Boundary Arrows 69

Iierarchical Consistency Checking Rules 76

Testing Expectations 80

Test Results Validation 81

Summary .. 83

VI. CONCLUSIONS AND RECOMMENDATIONS 84

Introduction ... 84

Conclusions ... 84

Recommendations .. 86

Boundary Single Data Item 86

Boundary Pipeline Data Items 86

Further IDEFo Diagrams Drawing Features 87

Bibliography .. 88

vi

List of Figures

Figure Page

1. Example of a IDEF0 Diagram 6

2. Basic Concept of an Expert System Function 9

3. Development of an Expert System 10

4. The Structure of a Rule-Based Expert System 11

5. Clips/Ada Visibility with Essential Subsystems 14

6. Components of a Context Diagram 20

7. Hierarchy Diagram for 'Control Elevator' 22

8. A-0 Essential Model Diagram for 'Control Elevator' 23

9. AO Diagram for 'Control Elevator' 24

10. Al Diagram for 'Control Elevator' 25

11. A12 Diagram for 'Control Elevator' 26

12. A2 Diagram for 'Control Elevator' 27

13. A26 Diagram for 'Control Elevator' 28

14. Module Diagram for Essential-Fact.Utilities 40

15. Module Diagram for ClipsWorkingMemory-Interface 41

16. Module Diagram for Essential-O.. 42

17. Flow Diagram for IDEFo Diagram Translator 48

18. Essential Subsystems Relations and Visibility 63

19. A Typical Activity Box Features 64

20. Hierarchical Boundary Relations Between Parent and Child Activities 66

21. Pattern Matching: Rules and Facts 70

22. Intermediate Data Arrows Between Child Activities 73

23. Pipeline Consists of Data Arrow Relations 74

24. SAtool II Syntax Checking Rules visibility network 79

vii

List of Tables

Table Page

1. Object Classes Managers and Facts Format Extracted by EssentialFactUtilities 52

2. if... hen Construct for the IDEFO Syntax Checking Knowledge Base 77

3. Possible Syntax Expert System Checking Results 78

viii

Table Page

ix

AN ADA BASED EXPERT SYSTEM

FOR

THE ADA VERSION OF SAtool II

L INTRODUCTION

Background

To improve the productivity of quality software has been an objective ever since the first

programmer Ada Lovelace first put quill pen to paper to program Babbage's analytic engine.

Software development tools was expected by the software developers ever since. The recognition

of the existence of the Software Crisis was initially revealed in the International Conference of

Software Engineering at Garmisch, West Germany, in 1968 and continues today (4:1-3). In a

sense, the essence of the software crisis is simply that it is much more difficult to build software

systems than our intuition reflects (11).,

In the systematic development and analysis of specific algorithms, especially for software

development, computational complexity, is a field of study that runs in parallel with algorithmics.

To consider globally the class of all algorithms that are able to solve a given problem is no doubt

impossible in practice. Using algorithmics, we may prove by giving an explicit algorithm, that

a certain problem can be solved in an acceptable time. Using complexity constraints, we try to

find any algorithm that is capable of solving our problem correctly on all instances. Thus, it is

manageable, applicable, and can be implemented. We may have found the most efficient algorithm

possible. In this case we say that the complexity of the problem is known exactly; unfortunately,

this does not happen often. An algorithm developer should seek the design that is consistent and

within the complexity constraints of the particular effort (6:292).

Traditional computing technology has been able to develop powerful solutions for problems

which can be clearly and completely codified-that is, problems that have algorithmic or closed form

solutions. In practical problem solving there are many areas where such methods cannot be applied,

where experts are needed to gather and interpret data and select a strategy for solving a problem.

Such problems are typically poorly specified, difficult to define, heavily dependent upon rules of

thumb-or heuristics. It is in these less well specified domains that expert systems can contribute

(12:1-1).

As a rule of thumb, software development tools are crucial to the success of such an effort

(19). Software development tools are designed to save both the time and effort of the designers.

Here at AFIT, we have a tool called SAtool(15) that could be used as an requirement analysis tool

during the first phase of the software development lifecycle, the requirement analysis phase. Tools

should have a friendly interactive user interface, thus easy to learn and quick in application. Also

they should produce acceptable results.

In order to develop a more powerful environment an expert system funct.on is appropriate

as a feature of SAtool(16). Once it is accomplished, the user, can development their require-

ments/specification using the software development requirement analysis tool. In particular they

could perform syntax checking functions without timt nsuming manual checks. Some terms must

be defined in order to facilitate the understanding of the development of such an expert system.

Computer Aided Software Engineering (CASE). In the process of developing computer

software, a case tool is any software tool used by lesigner during the development of software. It

involves all the tools that could be integrated together as a software working environment. CASE

tools may be used during any of the development phases:

1. System Requirements

2. Software Requirements

3. Analysis

2

4. Program Design

5. Coding (implementation)

6. Testing

7. Operations (11:250)

Prior to the late 1970s, the most common method for representing user requirements for

system development was informal narrative English (30:123). These requirements exhibited sev-

eral undesirable characteristics (30:123-124): monolithic, redundant, ambiguous, and maintenance

difficulties. The importance of well defined software requirements is crucial to the success of the

particular project both in time and efficiency. Five important reasons are:

1. The later in the development life cycle that a software error is detected, the more expensive

it will be to correct. More time will be wasted.

2. Many errors remain latent and are not detected until well after the stage at which they are

made.

3. Many requirements errors are made.

4. Errors made in requirements specifications are typically incorrect facts, omissions, incons~s-

tencies, and ambiguities.

5. Requirements errors can be detected(9:23-26).

The recognized need for an improved methodology led to the gradual transformation of in-

formal methods into semni-forrmal methods that were graphic, partitioned, and minimally redun-

dant (30:124-125). Early formalized methods included Data Flow Diagrams (DFDs), Entity-

Relationship (E-R) Diagrams, DeMarco Data Structure Diagrams, Jackson Data Structure Dia-

grams, and Structured Analysis (SA) (24) (30:299-300). However, without automated tools to

draw and validate the graphical models, the process of developing and maintaining the models

3

sometimes became overwhelming, especially for systems whose retuirements constantly changed

and were of considerable complexity. Naturally, this spurred research and development of a class of

products known as Computer Aided Software Engineering (CASE) tools which support the drawing

and validation process(30:128,464).

Structured Analysis (SA) and SADT. A similar yet alternative graphical modeling

method to the DFD is SA developed by Ross (24) (30:299). According to Ross, the SA technique

produces:

a hierarchically organized structure of separate diagrams, each of which exposes only a
limited part of the subject to view, so that even very complex subjects can be under-
stood. The structured collection of diagrams is called a SA Model. (24:17)

SA permits requirements to be modeled in one of two ways: data decomposition or activity (process)

decomposition (24:19). SA is the basis for the development of the Structured Analysis Design

Technique (SADT 1) by SofTech, Inc. SADT is described in the book SADT: Structured Analysis

and Design Technique by Marca and McGowan. SADT is a graphical system for systems analysis

and design. The SADT syntax is based upon an hierarchical set of diagrams. A diagram at one

level is decomposed into several diagrams at a lower level to expose more detail as a program is

developed (19).

IDEF0 . IDEFO is a requirements modeling technique developed by SofTech for the U.S. Air

Force program for Integrated Computer-Aided Manufacturing (ICAM) (20). In fact, IDEF 0 stands

for ICAM Definition Method Zero. IDEF0 defines a subset of SA that omits the data decomposi-

tion and only permits requirements to be functionally or process modeled. The original purpose of

IDEFO is the "representation of the functions of a manufacturing system or environment". How-

ever, IDEF 0 can also be used as a graphical language for modeling system requirements, including

software systems. Functions(activities) are the basic objects of decomposition in SADT/IDEFo.

'SADT is a registered tradcmark of Soffech, Inc.

4

These functions represent different processes which may occur in a program. Tne graphical repre-

sentation for a function is a "rectangular box". Data items needed by or produced by the different

processes are graphically represented as "arrows". These arrows are grouped into four basic cate-

gories which help defining the interface between the different functions: inputs, outputs, controls,

and mechanisms. More detailed explanations are illustrated below:

" function - A function represents a process or action, and is best identified by a name that

starts with a verb. The function is viewed as transforming its inputs into outputs under the

guidance of its controls.

" data item - Data or information produced by or needed by a function.

" input - An data item arrow enter the left side of the function box

" output - An data item arrow leave the right side of the box.

• control - Defines the condition or circumstances under which the transformation from input

to output occurs.

" mechanism - An arrow entering the bottom of the function, indicate a means of performing

the functions.

" (all - A mechanism arrow exiting from the bottom of the box, indicates that the function is a

shared model. That is, it is decomposed either elsewhere in the system model, or in another

systems model.(20)

An example of an IDEFO diagram is shown in Fig 1, in which each field of Author, Project, Date,

Rev, Node, and Title must be filled. Each activity must be named and numbered and must have

at least one control (arrow entering the top) and one oL1pLIt (arrow leaving the right, side of a box)

Each data arrow must also be labeled. The function is viewed as a transforming its inputs (arrow

entering the left side of a box) into outputs under the guidance of its controls. Each function in

5

AUTHOR: Min-fuh Shyong DATE: 2/26/91 READER:

PROJECT: AFIT Tasks REV: 1.0 DATE:

instructor advice

books ideas AtermRead
source Write

2 paper

lecture

Listen

NODE: Al TITLE: Term Paper NUMBER:

Figure 1. Example of a IDEFO Diagram

this diagram can be a parent diagram in the decomposition of its child diagrams. More examples

and IDEFo syntax will be introduced in chapter 2.

Data Dictionary. The phrase data dictionary is almost self-defining. The data dictionary

is an organized listing of all the data elements that are pertinent to the system, with precise,

rigorous definitions so that both user and systems analyst will have a common understanding of all

inputs, outputs, components of stores, and intermediate calculations (30.189). A data dictionary

is a technique that usually accompanies one of the graphical modeling techniques (27:82-83).

6

SAtool. SAtool is a C-based CASE tool for assisting the software engineer in the require-

ments phase of the software development life cycle (13:6-1). SAtool's graphical language is based

on IDEFO which, in turn, is based on the SADT. SAtool allows the user to perform requirements

analysis by developing IDEFo diagrams and associated data dictionaries.

SAtool-Il. The essential model and graphics editor model are being develop as an object

based Ada CASE tool (SAtool II) using the abstract data model as the requirements document

(16)(28). The development and implementation of an object oriented design (OOD) in Adu for the

essential dat&. model is achieved. SAtool-II differs from its predecessor SAtool, in that SAtool-II is

to be fully implemented in Ada programming language and more functions, like a .;yntax checking

expert system are expected to be completed in Ada as well.

SAtool-II is designed for individuals wh3 are familiar with structured analysis and SADT. In

order for SAtool-II, or any interactive analysis tool, to be effective, it must be able to capture the

data information entered by the user and stored it into some type of database. Thus all the input

information will be examined by the tool system, prompt the user when ambiguities happen and

create a complete data dictionary without further manual inputs. SAtool-II stores data derived

from the SADT diagrams in a standard file format which can be read by the common database

interface. The purpose of this stored standard file is for the future compatibility with as many

database tools in existence as possible (17).

Exp,-rt System. The first step in solving any problem is defining the problem area or

problem domain. This consideration :s just as true in artificial intelligence (AI) as in conventional

problem solving. According to Luger, the attempted definition of Al is:

Artificial intelligence may be defined as the branch of cnmputer science that is concerned
with the automation of intelligent behavior. Al is part of computer science and, as such,
must be based on sound theoretical and applied principles of that field These principles
inchc the data structures used in knowledge represetation, the algorithms needed to
apply that knowledge, and the language and programming techniques uscd in their
implementation.

7

However, this definition suffers from the fact that intelligence itself is not very well
defined or understood. Thus the problem of defining artificial intelligence becomes one
of defining intelligence itself. (18:1)

Because of the mystique formerly associated with AI, there is a lingering tendency to still

believe the old adage "It's an AI problem if it hasn't been solved yet" (10:1). Professor

Edward Feigenbaum of Stanford University, an early pioneer of expert systems technology, has

defined an expert system as ".. an computer program that uses knowledge and inference priedures

to solve problems that are difficult enough to require significant human expertise for their solution."

That is, an expert system is a computer system which emulates a small aspect of the decision-

making ability of a human expert. The term emulate means that the expert system is intended to

act as much as possible respects in the problem domain like a human expert. An emulation is much

stronger than a simulation which is cnly required to act like the real thing in some respects (10:1).

Internally, the expert system consists of two main components. The knowledge-base contains the

knowledge with whid the inference engine (algorithm) draws conclusions. These conclusions are

'he expert system's responses to the user's queries for expertise. As more knowledge is added to

the intelligent assistant, it acts more like an expert (matching patterns is a logical fashion following

the experts explicit reasoning that has been programmed). An expert's knowledge is specific to one

problem domain as opposed to knowledge about general problem-solving techniques. General

problem domains are medicine, finance, science or engineering and so forth in which an expert can

solve specific problems very well. The expert's knowledge about solving specific problems is called

the knowledge domain (data structure and control structure) of the expert (10:3).

Similarly, according to Luger:

An _xpert system is a knowledge-based program that provides "expert quality" solutions
to problems in a specific domain. Generally, its knowledge is extracted from human
experts in the domain and it attempts to emulate their methodology and performance.
As with skilled humans, expert systems tend to be specialists, focusing on a narrow
set of problems. Expert systems neither copy the structure of the human mind nor
are mek hanimns for general intelligence. They are practical programs that use heuristic

8

r "- 1

Knowledge-Base

Facts ------- --------

User

SL----------

- Inference Engine

Expertise

Expert System

Figure 2. Basic Concept of an Expert System Function

strategies based on a certain set of algorithms developed by humans to solve specific
classes of problems (18:291)(23).

A concept figure of an expert system function is shown in Figure 2.

The process of building an expert system is called knowledge engineering. Knowledge

engineering refers to the acquisition of knowledge from a human expert or other source and to the

art and science of crafting these expert systems(12:1-2). It applies to all levels of the software life

cycle. But for the reasons mentioned earlier, it emphasizes the requirements phase. An expert

system has the following performance characteristics:

" High performance. The system must be capable of responding a,. a level of competency equal

to or better than an expert in the field. The term better means that the system will never

forget things, getting tired, make mistakes, like a human expert does.

" Adequate response itme. The system must also perform in a reasonable time, comparable to

the time required by an expert to reach a decision.

" Good reliability. The expert system must be reliable and not prone to crashes (giving false,

slow or no results) or else it will not be used.

9

Human

S Expert [

Dialog

Knowledge

Engineer

Explicit Knowledge

Knowledge-Base

of

Expert System

I

Figure 3. Development of an Expert System

Understandable. The syst,.. should have an explanation capability (pattern matching) in an

equivalent way that human experts can explain their reasoning. (10:6-9)

The general stages in the development of an expert system are illustrated in Figure 3.

Expert System Tools. An expert system tool is any computer language or programming

system that supports the encoding of domain knowledge and provides one or more inference tech-

niques (search-methods; select, match, act) to apply the knowledge in order to solve the problem

(16:5). The structure of a Rule-Based Expert System is illustrated in Figure 4.

CLIPS (C Language Integrated Production System) is an expert system tool, CLIPS/Ada,

the same tool as CLIPS but written entirely in Ada, is selected for this effort. Since CLIPS/Ada

is the only expert system tool available that was written in Ada programming languagc. As with

10

INFERENCE

KNOWLEDGE ENGINE WORKING
BASE MEMORY

(RULES) A C (FACTS)

AGEN

EXPLANATION KNOWLEDGE

FACILITY ACQUISITION
FACILITY

USER
INTERFACE

Figure 4. The Structure of a Rule-Based Expert System

most expert system shells, CLIPS/Ada already provides an inference engine and employs a forward

chaining reasoning method (1:128). It is already implemented and interfaced into the SAtool II

Essential Subsystem(16).

History

The original SAtool was developed by Steve Johnson (13). SAtool is an interactive computer

aided software engineering (CASE) tool that permits the creation and editing of IDEF0 diagrams

based on the Structured Analysis and Design Techniques (SADT 2). In fact, SAtool is sometimes

referred to as a 'SADT editor'. Implemented on a Sun-3 in the C programming language, SAtool

created both a graphics file and a data dictionary file; however, no syntax checking of the output

was provided. The user would have to manually check the diagrams and is highly likely to neglect

a mistake.

2 SADT is a trademark of Sorfech, Inc.

11

D. H. Jung explored the idea of performing syntax checking on the SAtool output(14). His

research focused on the prototype development of an IDEF0 syntax (language) validation tool

which is an expert system to perform a syntax validation of the IDEF0 diagram. The IDEFo

syntax is formalized by converting SADT diagram constructs to predicate logic facts, and defining

grammatical rules as predicates also. The research describes how both a box and an a-row are

transformed to predicate logic. A C program called a translator translates the IDEFO diagram

features into a formal predicate logic description that is 'readable' by the expert system. The

expert system includes a backward chaining inference engine - BC33 , which uses a goal driven

inference chain supported by Prolog-1. A chain in the goal driven inference process is a sequences

of steps traversed from a hypothesis back to the facts which support the hypothesis(10:159). BC3

requires facts (knowledge) to be represented as three-element lists of the form [Object, Attribute,

Value] which are normally referred to as OAV triples. Although the expert system is successful in

performing the syntax validation of the IDEFo diagram, the rules only check a limited number of

IDEF0 features. In addition, full integration with SAtool is not achieved, since the fact file must

be transferred to a separate computer, the Z-248.

Continuing research on the integration of an expert system with SAtool, Inteak Kim generated

an expert system implemented in Quintus Prolog on the SUN-3(15). The entire process of IDEFo

diagram creation, editing, and error checking is performed on the SUN-3, but the user is again

required to run two separate processes: one for SAtool and one for Quintus Prolog.. Even the rule

base of the expert system is extended to include rules for several additional features of the IDEFo

language, and the need for the separate microcomputer to run the expert system is also eliminated.

However, fully transparent integration is still not achieved due to software compatibility problems

between the C language and Quintus's version of Prolog. Besides, the data in an [0 A V] tuple is

limited to have only three fields introducing extra complexity in mapping the IDEF0 syntax to tile

expert system rules.

3 BC3 is a Prolog backward chaining expert system shell developed by F. M. Brown.

12

Overlaping with the work of Kim, Terry Kitchen and Jay Tevis jointly designed the essential

model and graphics editor model for the Ada based SAtool. The research goal was to develop

an object based Ada CASE tool (SAtool II) using the abstract data model as the requirements

document (16) (28).

SAtool-I has shown that an Ada based expert system to check the syntax of an IDEFo

diagram is feasible as a part of that system, thus the effectiveness and efficiency of the developing

tool is to be evaluated. At present, a generic Ada based expert system tool (shell), CLIPS/Ada is

already implemented and interfaced into the Essential Subsystem, where t'.e subsystem is the part

of SAtool II that defines the data structure of the user input data. The visibility of the CLIPS/Ada

with the Essential Subsystem is illustrated in Figure 5(16).

Problem Statement

The feasibility of using an Ada based expert system has been shown in SAtool II. However,

the translation of a user's hierarchical IDEF0 diagram to a facts file is not complete, this file can be

loaded into the working memory together with the CLIPS/Ada rules to check its syntax. Also, the

rules for checking the syntax are incomplete. Thus, the system is not able to perform the function

of checking the syntax information in a user developed hierarchical IDEFO diagrams with SAtool

II.

This research investigation focuses on continuing the fact translation procedures, expanding

SADT syntax checking rules and making the Ada based expert system of the SAtool II to a testing

phase. Further investigations could be made to improve its efficiency or reevaluate its applicability

to the current project.

Assumptions

Several assumptions must be made at the outset of this research.

13

Error Essential
Handler ubsyste

Activi Data Historical

ty Element Activity s Consist- COM
Manager Manager Manager elation of RCIL.ion Relation

anager Manager Manager

Essential Data
Fact Dictionary

flities

Project

Manager
CUP /Ada

CLIPS
orking LEGEND

Memory
nterface

C) Object

Visibility

direction

Figure 5. Clips/Ada Visibility with Essential Subsystems

1. CLIPS/Ada is an Ada version of CLIPS which has all the original functionality of CLIPS

with a few exceptions(16). CLIPS/Ada has already implemented as a part of the essential

subsystem as the data driven, forward chaining inference engine for the Syntax Checking

Expert System.

2. Concurrent research work with the drawing data model and related SAtool II implementation

issues initiated by (28) can proceed at a pace that does not hinder this concurrent research.

The drawing data model is expected to implement the screen layout and drawing functions

to be integrated with the essential model.

3. Users and/or researchers planning to utilize this work, must be familiar with the concepts of

modeling software requirements using IDEFo, SA, or SADT.

Research Approach

The following steps outline the intended research approach:

1. Analyze the IDEF 0 diagram syntax. "Translate" all the information that might appear in

the structures including illegal ones into a facts knowledge format that can be accepted by

CLIPS.

2. Complete the SAtool II Ada program to perform the functions in (1) to retrieve all the facts

stored in the essential model.

3. Complete the Ada program to restore all the facts back to the essential data structure.

4. Complete the IDEF0 CLIPS rule base that checks the facts that are translated from the users

diagrams and subsequently loaded into working memory of CLIPS.

5. Demonstration programs will validate that the CLIPS expert system and fact translation

procedures works.

6. Selection and use in ES application.

15

Materials and Equipment

The essential subsystem of SAtool II is already implemented. The CLIPS/Ada is also inte-

grated into the subsystem. The target environment for the integration to occur is the SUN-4 work-

station running a version of Berkeley Unix OS. Several workstations are readily available within

the Department of Electrical and Computer Engineering to accomplish this research. The SUN-4

is the chosen platform, because it is the most readily available workstation with the X-window vs

sunview graphics capability within the department.

Scope and Limitations

1. The development of subprograms within the name subsystem will translate information stored

in the essential data model data structures into facts suitable for loading into the working

memory of the CLIPS expert system shell.

2. The development of subprograms within the subsystem will restore all the facts from the facts

file and load them back to the essential data model data structure. Thus each facts file could

be separately stored, modified, and perform syntax checking in the essential model.

3. The development of an independent rules file will perform the syntax checking functions. This

is to be inferenced by the CLIPS/Ada already integrated into the essential model.

4. The integration of the SAtool II subsystems with the drawing model of SAtool II.

Sequence of Presentation

This thesis is designed to be organized into 6 chapters. A short introduction to tile IDEF0

language and all the related terms arc explained in chapter 1. A history of this research and its

feasibility is discussed in chapter 2, literature review.

Chapter 3 presents a review of the requirements for the subsystem, the essential model spec-

ifications and data structures, tile expert system rationale and examples. fhe facts translator

16

requirements and the relationship between the facts in a file with the working memory, and the

facts in the working memory with the expert system rules are also presented. In addition, the

syntax checking expert system requirements will be specified.

Chapter 4 presents the design of all the required subsystems and files to be implemented into

the essential subsystem.

Chapter 5 illustrates the completion of the design and also includes the implementation,

compiling and testing of the subsystem.

Finally, Chapter 6 presents a summary of the thesis work plus some conclusions and recom-

mendations.

17

II. LITERATURE REVIEW

Introduction

The final goal of this thesis investigation is to design and implement an Ada based expert

system formulation as a subsystem for checking the syntax of IDEFO diagrams derived from the

essential model of SAtool II. Since the IDEFo language (20) is implemented by SAtool II, a detailed

overview of the language is presented in this chapter and a hierarchy of IDEF0 example diagrams

are shown. Also the basic ideas of CLIPS is introduced. An example along with the behavior of

CLIPS execution is provided in Appendix A.

The process of translating the IDEF0 models into facts formats from their SAtool II data

structure is introduced. It is initiated by (16). But most of the functions are not implemented.

How those facts are to be used by the CLIPS expert system rule base is explained.

Finally, the Syntax Validation of SAtool II will be explained.

IDEFo

The main concern supporting structured analysis (SA) is the decomposition of a complex

problem into parts that can be more easily understood. This is facilitated by a hierarchical ap-

proach, called functional decomposition, in which a major problem is broken down into its major

components, then each of them is in turn divided into its major pieces, and so forth. IDEFO syntax

is a derivative of the SADT syntax and is used for software requirements analysis (20).

Although a decomposition can be based on data or process, IDEF0 is based on the analysis of

processes or activities. The decomposition is reflected through a series of Function Diagrams and

corresponding facing page text, as shown in Figure 7 through Figure 13.

An IDEFo system model consists of a series of hierarchically related function diagrams,
along with text descriptions and other supporting elements. The hierarchy of drawings

18

is formed by starting with a single function representing the system being modeled,
and successively decomposing each function into its major subfunctions. Thus at any
given level, a function diagram represents a single function of the next higher level,
and presents the major subfunctions of that parent function, along with the interfaces
between those subfunctions.(20:7)

The overall objective of using IT'EF0 diagrams is the creation of a system's software require-

ments model. Any model is an abstraction of reality, with many details omitted and only the

relevant ones included. This model serves two purposes: 1. to develop a detailed understanding of

the user's requirements; 2. to provide a structured documentation of the software requirements for

the use in the software design stage of the life cycle.

As mentioned earlier in Chapter 1. The most important item of decomposition in IDEF 0

is a function, which is represented by a rectangular box. Since a function represents a process

or action, and is identified by a name that starts with a verb. A box might be the parent of its

decompositions. An IDEFO model of software system requirements is constructed by starting with

an A-0 diagram that consists of a single box and a number of arrows. In the highest level diagram,

the single box represents the entire system and might be decomposed to any level of details. Each

box on a diagram may be decomposed into a diagram of its own. It is equivalent to the idea

of "context diagram" as mentioned in (30:339) which is a part of the DFD modeling technique.

The context diagram highlights several important characteristics of the system similar to the A-0

diagram:

" The people, organization, or systems with which the developed system communicates. These

are known as terminators.

* The data that our system receives from the outside world and that must be proccsscd in some

way.

" The data produced by our system and sent to the outside world.

19

5 < arriving books

invoice

Book rderCredit Status

sales reports

invoice

Management Accounting

Figure 6. Components of a Context Diagram

" The data stores that are shared between our system and the terminators. These data stores

a.c either created outside the system and used by our system or created by our system and

used outside the system.

" The boundary between our system and the rest of the world.(30:339)

The concept of a context diagram is shown in Figure 6.

Even the idea of IDEFO diagram and context diagram are equivalent. Each function box in an

IDEF0 diagram must have at least one control data and one output data, the input and mechanism

numbers are optimal. Those are not shown in the context diagrams. The resulting functions, data

manipulations of the model represented in IDEF0 diagrams is more explicit than that of the context

diagrams. Which means easier to understand and implement. Thus IDEFO diagrams are selected

for this discussion.

In a hierarchy of 1DEF0 diagrams, Level A-0 (pronounced A minus zero) Diagram is also

known as the environment model, as it represents the interface between what is being modeled or

20

analyzeJ and its environment. It is used to define the scope of the system. In most cases, A-O is

the highest level considered.

Since the A-0 diagram lacks the necessary detail to describe the requirements and functions of

the system being developed, it must be decomposed into lower level diagrams forming a hierarchy,

where each lower level in the hierarchy reveals greater detail.

Figure 7 shows the hierarchy of the example IDEFO model for "ControlElevator". Therefore,

each diagram in the model, with the exception of the A-0 diagram, is essentially a functional de-

composition of a box in a higher level diagram. The box in the higher level diagram is appropriately

called the parent box of the diagram.

The first actual level of decomposition is the "Level AO Diagram," a separate drawing which

represents the same level of analysis as the A-0 diagram, but which shows the major subfunctions

of the system being investigated. Since it is the same level, the external interfaces on this drawing

should be the same as in the A-0 diagram, in addition to the interfaces between the subfunctions.

Each box on the diagram is given an integer number, beginning with "1," but the actual function

numbers are "Al, A2,..." at this level. The numbers are relative to each particular box and the

actual function number of a box is its integer appended to the funcion number of its parent. It is

used to track consistency between levels.(30:24-30). Furthermore, each and every box in an IDEFo

diagram must have at least one control arrow and one output arrow. No restrictions exist on the

number of input or mechanism arrows permitted.

For more details concerning about the IDEFO modeling technique refer to the manual (20).

Figure 8 illustrates a single IDEF0 diagram that represents the essential model for an elevator

scheduler and controller. Figure 9 through 13 shows the decomposition diagrams simplified and

translated into IDEF0 diagrams from (30:631-652) as an example. Since the functions of creating

a data dictionary has not been implemented for the essential model, so the discussion for that is

omitted here.

21

Pet-More General

Parent A-0

Activity /

I2
3

I \
I \

Figure 7.HieMore Detail

2-I
/ I

/ AO ! I

I I

I I

/
I I
I %

I

A1 _

Al \S ",,

I\

II

Figure 7. Hierarchy Diagram for 'Control Elevator'

22

AUTHOR: Min-fuh Shyong DATE: 2/26/91 READER:

PROJECT: Control Elevator REV: 1.0 LATE:

summons indication

floor sensor

door sensor

system control

passenger

requests Control control signals

Elevator
overload

sensor

door motor drive

floor motor drive

NODE: A-0 TITLE: Control Elevator NUMBER:

Figure 8. A-0 Essential Model Diagram for 'Control Elevator'

23

AUTHOR: Min-fuh Shyong DATE: 2/26/91 READER:

PROJECT: Control Elevator REV:. 1.0 DATE:

summons indication

passenger Store floor sensor

Request
requests

door sensor

received Isystem control

request Elevatorsi nl

Control

2

overload sensor Schedule control

Elevator

3 signals

floor motor dir
driver motor drivedrive

NODE: AOTITLE- Schedule ElevatorNUBR

Figure 9. AO Diagram for 'Control Elevator'

24

AUTHOR: Min-fuh Shyong ~ DATE: 2/26/91 READER:

PROJECT: Control Elevator ~ REV: 1.0 DATE:

Manage received

Destination

2 request

Figure 10. Al Diagram for 'Control Elevator'

25

AUTHOR: Min-fuh Shyong ~ DATE: 2/26/91 jREADER:
PROJECT: Control Elevator ~ REV: 1.0 DATE:

summons indication

lIevator
tatusCotodetntoS

or

NOE: A2 ITE Dspa Request 2UBR

Figure 11. A12 Diagramn for 'Control Elevator'

26

AUTHOR: Min-fuh Shyong DATE:02/26/91 READER:

PROJECT: Control Elevator REV: 1.0 DATE:

summons

floor motordriv

Fhc irec.tiagra foior antolElvaor

272

AUTHOR: Min-fuh Shyong DATE: 02/26/91 READER:

PROJECT: Control Elevator REV: 1.0 DATE:

Sconfirmed

compared

start/ Compare signals Reorder sequenced

stop AiTI L So Signals N ce
1 2

ealier

signals

Backup backed Store later

Signals Sorted signals

3 signals4

stored

signals

end

floor motor drive Sgas 5 signals

NODE: A26 TITLE: Sort Signals 1NUMBER:

Figure 13. A26 Diagramn for 'Control Elevator'

28

Introduction to CLIPS

To my knowledge so far, there are many practical aspects of building expert systems which

must be learned by doing. Those aspects include, to say the least, the ability of defining a problem,

the knowledge to approach the solution of that problem, the proficiency in using the expert system

tools, the ability to reason under uncertainty, and finally the skills to implement that knowledge into

an expert system. So far, building an expert system is much like writing a program in a procedural

language. We have learned a lot of theories and algorithms for procedural languages at AFIT. But

knowing how an algorithm works is not equivalent to being able to write a procedural program to

perform that algorithm. Due to the fact of the complexity of the problem, it is not always possible

for a software designer to build a system that will reflect all the intuitions the designer intended

to implement. But the final product should be maximized on its functions in accordance with

the understanding of the problem and the design techniques of the software developer. Similarly,

capturing an expert's knowledge is not equivalent to building an expert system. For this reason,

practical experience in using an expert system tool is invaluable in learning about expert systems.

In addition to the inadequacies mentioned in Chapter 1 for using [0 A V] triples to represent facts

of the IDEF 0 model diagrams. CLIPS, which means C Language Integrated Production System is

introduced here. The basic elements of CLIPS are (10:373):

1. fact-list: global memory for data. Each fact is a chunk of information in CLIPS. A fact

consists of one or more fields enclosed in matching left and right parentheses.

2. knowledge-base: contains all the rules. Rules can be typed directly into CLIPS or they can

be loaded in from a file of rules created by an editor. Each rule is of the form:

(defrule name-of-the-rule
LHS-of-the-rule (conditions)

RHS-of-the-rule (actions)

29

Where LHS

RHS logically implies:

if LHS(Conditions).. THEN RHS5(Actions).... All the LHS conditions are logically and'ed

together.

3. inference engine: controls overall execution, applying all the rules to the fact-list and derive

expert results. It can be a combinatorial search process.

CLIPS is a forward chaining rule-based language that has inferencing, pattern matching,

state searching, and representation capabilities. The design of CLIPS is such that rules only match

facts that have been entered after the rules. Thus newly entered rules will not match the facts that

are currently on the fact-list. Only new facts that are entered will be seen by the rule. This means

that a rule can only be activated by facts that are asserted after the rule is entered, thus during

the execution, after new facts are asserted as a result of some rules firing, then it might activate

existing rules that were not matched before (10:373-387).

Essential Model of the 1DEFo Abstract Data Model.

The subsystems of the essential model which are already partially implemented but not com-

plete include:

" The necessary data structures to hold the essential data model state information.

" The storing and restoring of essential data model state information which is in the form of

CLIPS/Ada facts.

" the capability to create one or more data dictionary entries.

* The capability to check tile syntax of an II)EF0 model by means of a rule base consisting of

IDEF0 syntactical checking rules(16).

30

Facts utilities. The storing and restoring of essential data model state information in the

form of CLIPS/Ada facts is performed by a separate file EssentiaLFacL Utilities. The file is an

"iterator" performed by a set of operations that iterates through the data structure of the essential

model(3:52-62).

Through precisely defined formats of the output file, the informations from the entire essential

data model (i.e., the project) is retrieved and stored as a CLIPS/Ada readable file format:

(attribute object value, value,..:.)

Where attribute defines the type of fact, object is the actual name of the data, and values are a

set of descriptions of the object with unlimited length but each value must be separated by one or

more spaces; i.e., (project-name Project-Name) where capitalized identifiers in the parenthesized

fact file represents information derived for the data structure of the essential model. Since each

project is stored in the form of facts file. A set of restore functions is also needed to restore the

facts format back into the IDEF0 essential data model, thus we don't need to regenerate the model

again.

Of particular interest is tb two different groups of facts: syntactical facts, and stat repre-

sentation facts. Syntactical facts are those sent to the CLIPS working memory for syntax checking,

whereas state representation facts simply represent the sate of the IDEF0 model. The reason for

this is that the syntax checking rules does not need to know the detail of some data value, simply

to check if it is there.

CLIPS Working Memory Interface and Rules File. The CLIPS Working Memory Interface

provides the interface for the Essential Subsystem to the CLIPS/Ada expert systcm. It is the only

package in SAtool II that has visibility to the CLIPS/Ada expert system operations. When the

check syntax option is selected by the user in the essential model, the facts file and another separate

rules file are loaded into CLAPS Working Memory and CLIPS/Ada initiates the logical sequence

31

to show the syntactical checking results of the created IDEFO model. It is an interface designed by

(16).

The rules file is to be expanded and tested as an integral part of the essential model.

Expert Systems.

In the process of building an expert rule system using an expert system shell, we are following

a step by step method of building a program(10:419).

" First: pseudo rules were written using English-like text.

" Second: the pseudo rules were used to determine the types of facts that would be required.

Templates describing the facts were designed, and the initial knowledge (facts) was coded

using these templates.

" Finally: the pseudo rules were translated to CLIPS rules using the fact templates as a guide

for translation.

To show how this works, an example from (10:413-419) was introduced and its behavior during

CLIPS execution is shown as explained in Appendix A: CLIPS BEHAVIOR IN THE BLOCKS

WORLD.

Integration of Expert Systems with CASE Tools.

Through examining and understanding the projects developed from different perspectives, the

strengths and weakness of each project can be identified for future reference. Today, expert systems

are built on a variety of software and hardware platforms. Because of these various platforms,

AFIT, academia, and industry have begun both theoretical and actual development of systems that

integrate CASE tools with expert system. Each of the following projects have been implemented

with differing degrees of success.

32

SAtool with Syntax Validation.

As mentioned previously, SAtool (13) is simply a graphical editor and provides no advice or

assistance to the user as the IDEFO diagrams are being drawn. In other words, the user of SAtool

could not determine if the finished diagram is consistent with the IDEFO graphical language except

by tedious and time consuming manual inspection. To improve this, Jung initialized the idea of

syntax checking ability with SAtool in his MS thesis in 1988 (14) His research focused on the

prototype development of an IDEFo syntax (language) validation tool which is an expert system to

perform a syntax validation of an IDEF0 diagram. The IDEFo syntax is formalized by converting

the syntax to predicate logic facts. The research describes how both a box and an arrow are

described in predicate logic.

The graphical feature BOX is translated into the predicate BOX(x), which means: x
is a BOX. In the case of the ARROW, it is translated into the predicate ARROW(x),
which means: x is an ARROW (16:28)

There are two steps to the syntax validation tool (16:28) First, a C program was devel-

oped called a translator to translate the IDEFO diagram features into a formal description that is

'readable' by the expert system. The expert system is a backward chaining expert system-BC31,

however, required facts had to be represented as three-element lists of the form [Object, Attribute,

Value] which are normally referred to as OAV triples. The IDEF0 diagram representation is stored

in multiple C data structures, and the translator program creates a file of facts based on the

information in those structures (16:28)

The second and final step of the syntax validation tool is the syntax checker (16:28) The

syntax checker's purpose is to check the IDEF0 diagram (now represented as OAV triples) for

syntactical errors. the syntax checker is, in essence, the expert system. Syntax rules such as "Each

box must have a name" and "Each arrow must have a label" are converted to f ... then constructs

'BC3 is a Prolog backward chaining expert systcm shell developed by F.M. Broan.

.33

in a form acceptable to BC3. The syntax checker, when executed, produces error messages for the

designer to review and take corrective action.

The research, however, was limited in scope. All the features of an IDEF0 diagram are not

addressed. Plus, a transparent integration of SAtool and the syntax validation tool was not achieved

(i.e., a manual step remained).

Both the aforementioned integration problem as well as expanding the syntactical checks

that the expert system performed were resolved(16:29). The number of IDEF0 syntactical features

checked by the expert system are expanded (16:29). To resolve the integration problem, an attempt

was made to integrate SAtool with a Quintus Prolog implementation of the syntax validator (the

expert system). The "new" syntax validator is simply the expert system shell BC3 with changes

necessary for it to run under Quintus Prolog. Unfortunately, compatibility problems between Quin-

tus Prolog and the C programming language result in a failure to achieve a transparent integration

of the expert system with SAtool (16:29).

Currently, a more capable CASE tool, SAtool II is being developed in the Ada programming

language and includes an Ada based expert system using CLIPS/Ada. Terry and Jay continued the

effort of developing the Essential model and Drawing Model of SAtool 11 (16) (28) As mentioned

earlier, the Essential Model designed and implemented by Terry needs to be expanded to complete

its expert system functions.

Speclficatzon-Transformation Expert System (STES). At the University of Illinois, Tsai and

Ridge have developed the Specification-Transformation Expert System (STES) winch is an expert

system that they have integrated with the CASE tool Teamwork developed by Cadre Technolcgies

(29:34). Teamwork is used to create DFDs. In addition, Teamwork runs on an Apollo worl .,tation

platform and includes a built-in Access tool which allows users to access tle underlying data

structures that contain the DFD description. In this case, a C++ program was written by Tsai

.34

and Ridge to access the DFD description (29:34). By implementing the STES in OPS5, which can

also run on Apollo workstations, transparent integration of Teamwork and STES is achieved.

After the requirements analysis phase of the software development life cycle is completed,

STES can be used in the next step - the design phase. STES assists the software engineer with

the design phase by transforming the DFD into a structuire chart (16:2). The STES is used to

examine the C++ representation of the DFDs, extracts the salient features, and converts them

into production rules. The STES then "applies inference to identify and transform the efferent,

afferent, and transformation-centered components of the dataflow diagram into a first-cut structure

chart" (16:29-30).

Visible Analyst Workbench. Visible Analyst Workbench 2 is an IBM-PC based CASE tool

marketed by Visible Systems Corporation that contains rules to perform error checking of DFDs

(16). According to the product documentation, the CASE tool portion called Visible Analyst

allows the user the choice of two different styles in DFD construction: the Yourdon/DeMarco

Method 3 DFD or the Gane and Sarson Method DFD (16"29-30). Unlimited levels of DFD process

decomposition are also supported. Regardless of th style chosen, however, the rules portion of the

tool called Visible Rules can check the diagram for proper balancing, naming conventions, etc (16).

The Visible Rules are executed without leaving the DFD which means transparent integration

between the CASE trol portion and the "expert system" portion is achicved. Although the word

rules implies a rule-based expert system is used, the proprietary nature of the product does not

permit the disclosure of whether the rules are implemented algorithmicaly or by an expert system

paradigm.

2
Visible Analyst is a registcrcd trademark of Visible Systems Corporation.

'The correct refeence should probably be YSM 1.0 (5).

35

Summary

This chapter provides a review of several subject matter areas that directly relate to this

investigation. More detailed IDEFO syntax was explained. Also the basic structure of CLIPS was

stated. The Essential Model of SAtool II is described along with its subsystems to gain insight into

an expert system functions. An actual example is provided in Appendix A to show the execution

of CLIPS program. Thus a user of SAtool II unfamiliar with CLIPS execution might be able to

understand the behavior of the expert system through the study of this example. Presented are the

format of facts and rules and the behavior of applying rules on those facts in the working memory

during execution.

Several examples concerning the integration of CASE tools with expert systems are also

reviewed, since this research calls for a similar integration. Clearly, all attempts at integration do

not succeed. To improve the chances of successful integration, information from successful projects

should be obtained and used as a foundation for further research. The integration of IDEFO syntax

checking capabilities in SAtool II using an expert system is the key concern of this research.

36

III. REQUIREMENTS ANALYSIS

Introduction

This chapter presents a review of the requirements for the subsystem to be integrated with

SAtool II. First, the IDEFo Dagram Translator is implemented as a separate package and Essential

Fact Utilities is used to translate any IDEFo diagrams drawn by SAtool II into a set of CLIPS

readable facts format. The second category is to design and implement the IDEFo Syntax Expert

System which is to be an application of a knowledge-based expert system. It is also a separate file

having ac-ess only to the CLIPS working memory in the essential model.

This chapter presents the considerations related to the development of the IDEF0 Diagram

Translator requirements, IDEFo Syntax Expert System requirements, formalization criteria, the

expected results, and validation test requirements.

Consideration of the Previous Studies

As mentioned in (15), the syntax checking ability was provided to find any inconsistencies

for boundary arrows with the parent IDEF 0 diagram. But as mentioned earlier, Object, Attribute,

Values data structure were used to represent the IDEFO diagrams known as OAV triples. Also,

compatibility problems between Quintus Prolog for syntax checking, and the C programming lan-

guage for IDEFo diagrams translator, resulted in a failure to achieve the transparent integration

of the expert system with SAtool. Thus the tool developed in (15) must currently run the systems

separately. This means the facts translated from the IDEFO diagrams must be generated and then

the inference process could begin for the syntax checking abilities.

Here, our purpose is to develop a system based on Ada. The translator is to be written in Ada

and the expert system tool is also to be in Ada, CLIPS/Ada. Once the subsystems are integrated

into a whole, the system should provide a CASE tool environment for SAtool II.

37

Facts Translator Requirements-EssentiaLFact_ Utilities.

Six different mechanisms or manager mechanisms are already implemented in the essential

model for the seven different object classes. The six manager mechanisms are:

1. Activity.Manager

2. DataElementManager

3. ConsistsOfRelationManager

4. HistoricalActivityManager

5. CallsRelationManager

6. ICOMRelation -Manager (16:64)

The IDEF 0 Diagram Translator is implemented as a separate file to be completed and integrated

with the Essential Subsystem. It must have the following two functions:

" Retrieve procedures

" Restore procedures

Retrieve Essential Data Model Information. The information that is stored in the manager

abstract state machine represents the essential part of an IDEF 0 model. This information must be

extracted from the manager for output to a file or for input to the CLIPS/Ada working memory

for syntax checking. This is accoL plishcd by a package containing a serious of Retrieve (Activity,

Data-Element ... ICOM..Relalzon) Facts procedures. Those procedures first examines the 'Type

Facts Flag'. Based on the flag setting (T or F), the procedure retrieves one of two different sets

of facts and inserts them into a Fact-Manager which is an instance of the Fact Buffer Package. If

the flag is true, only facts for the expert system arc inserted in the FactManager. If the flag is

false, only the facts necessary to permanently store the state of the essential data model (i.e., the

IDEF0 model) are inserted into the FactManager. This procedure is invoked bI a client program

38

whenever the user saves the project he/she is working on, or when the user wishes to check the

syntax of the project (i.e., the current IDEFO model) The required format for input to the CLIPS

working memory is CLIPS facts. The formats are strictly defined in the procedure through Ada

string type definition in accordance with the data type defined in the aforementioned six object

class managers (16).

Restore Essential Data Model Information. After each Retrieve procedure, the Restore pro-

cedure for the same object class accepts as input a buffer of facts representing state information.

These facts are then Restored into the object class manager by this procedure. This procedure is

normally executed as one of a sequence of events in the initialization of SAtool II when a previous

project is loaded from disk. Thus, the user could get all his work back into the Essential Model for

further rechecking or modification without having to retype everything.

The Module diagram for EssentialFactUtilities is illustrated in Figure 14 (16:121).

CLIPS- Working.MemoryInterface.

This package provides the interface from the Essential Subsystem to the CLIPS/Ada expert

system shell. It is the only package in Satool II that has visibility to the CLIPS/Ada expert system

operations. Once all the Retrieve procedures are completed, they will be included in the interface

package to be retrieved by the FactBufferPackage.

The Module diagram for ClipsWorking-llemoryInterface is illustrated in Figure 15 (16:120).

Essential.IO.

This is a package that. necessary for the operation of SAtool II to store essential data model in

a file and to load essential data model information from a file into the managers. Within the scope

of this thesis effort, only the retrieve procedures for those seven object classes are to be added, facts

39

Essential.Fact.Utilities

Consists-Of.Relation.Manager Activity-Manager

ICOM-.RelationManager Data.Element.Manager

Calls.Relation.Manager HistoricalActivityManager

Environment.Type Project-Manager

Figure 14. Module Diagram for EssentialFactUtilities

40

Clips-Workinglvkmory-Interface

Essential Yact-Utilties Embeded..Clips (a CLIPS/Ada package)

Environrnent-Types

Figure 15. Module Diagram for Clips-AVorking-Memorydiiterface

41

EsentWaJ0

Essential..Fact-.Utili ties

Environment-Type

Figure 16. Module Diagram for EssentialO

created from each object are given a fact name for for both the expert system and the Essential

Model. For instance, lRetrieve-ICO M Sacts in the EssentialO package will create a facts file as:

(deffacts icom-facts
icom-attribute Name value value value)

The module diagram for EssentialO is illustrated in Figure 16 (16:119).

412

Syntax Checking Expert System Requirements

The IDEF0 Syntax Expert System should allow the user to check the hierarchical activity

IDEFO syntax and the boundary IDEFo syntax in any diagrams using the facts file created by the

retrieve procedures. CLIPS/Ada is interfaced with the essential subsystem and has been proven

to be effective. A chain that is searched or traversed from the initial state to the final state of

a problem, during which, certain types of solutions are achieved is called a forward chain1 . That

means the chaining is reasoning from facts to the conclusions which follow from the facts. It is also

known as data driven, bottom-up reasoning(10:159-166).

The primary method of representing knowledge in CLIPS is a rule. A rule is a collection of

conditions and the actions to be taken if the conditions are met. The rules were defined to debcribe

how to solve a problem. The entire set of rules in an expert system is called a knowledge base.

CLIPS provides the search mechanism (the inference engine) which select the facts in the data

base to be matched with the condition(s) in the rule base and continue on this cycle until there

is no rules eligible to be fired. The current state is represented by a list of facts. Here the facts

or the data for the data base is the facts retrieved by the EssentialFactUtilities. The rule base

is to be applied by the inference engine integrated as CLIPS/Ada to the facts data file. As the

LHS of a rule are met, the rule are activated and placed on tile agenda according to their priority.

The priority is default to 0 for every rule in the knowledge base, unless a salience declaration is

placed at the first pattern of the rule to change it. A rule with the highest priority, once it is

activated will remain at the top of the agenda, thus will be fired first. After no rules are eligible to

be activated, the top rule on the agenda is selected, and its HS actions are executed. As a result

of RIIS actions, new rules can be activated or deactivated.

This pattern matching, activation, firing rules cycle is repeated until all rules that can fire

have done so or until the rule limit is reached(21:1-5).

'IThe forard chain is different froin backward chain in which that a backboard chain is trave ised fron i hylpothcsis

back to the facts %hich support the hypothe~sis

43

The expert system to be developed here must not only be able to check the syntactical

limitations for each activity, but also be able to find the inconsistencies between hierarchical IDEFo

diagrams. Thus, provide the user with Error, Warning, Suggestion or Notice messages. A summary

of the functions are listed below:

* Check that each activity must have at least one input and output.

* Check that each activity must have a name and be numbered.

" Warning the user that any particular activity has too many data element associated with it,

or the activity has some information, for instance, a description of the activity is missing.

" In the hierarchy of the IDEF0 diagram, each parent activity's boundary data elements must

be consistent with its child data elements.

* The number of icom number of a parent diagram and its child diagrams must be the same.

" The icom code of a parent activity should be consistent with its child diagram too.

" The number of boundary input, output, control, mechanism consistency check between a

parent and its child activities.

" Utility and Auxiliary rules to build up the environment of the syntax checking file.

Once the syntax checking function in the Essential Model menu is selected, the user should get a

list of messages concerning his work. If an error was encountered during the syntax checking, the

subsystem will be halted by a particular rule in the rules file. Otherwise, a congratulatory message

will follow all the Warning, Suggestion, or Notice messages if there are any.

The CLIPS/Ada used the VAX Ada Compiler version 1.5 running under VAX-VMS 5.1.1 to

create the executable. Therefore, it is useless on Unix based machines. Since the primary platform

for this research is a SUN-4 running a version of UNIX and a Verdix Ada compiler, several changes

to the original source code are performed by (16). First, all the CLPS/Ada source code files had

44

.ADA or .ADS extensions that are unacceptable to Verdix were changed to .a and .spec.a files.

All the files was transferred to Olympus to be integrated as the Essential Subsystem of SAtool

II. When compiling CLIPS/Ada, many warning messages are still received. These messages are

due to the source code authors explicitly declaring loop counters. VAX Ada obviously allows such

declarations; Verdix Ada allows them also but does not particularly care for them. Therefore,

Verdix Ada issues a warning message(16:132-133). Those warning messages can be ignored. Also,

the objective of this study is to develop a structured expert system to evaluate application facts

and rules based upon expertise in the future.

Summary

This chapter presented the requirements analysis for the development of IDEF0 Diagram

Translator and IDEF0 Syntax Expert System. Since the Essential Subsystem of SAtool II is entirely

based on Ada language, the Expert System will be done using CLIPS/Ada. The number of fields

of the facts format are unlimited, thus giving us freedom to define the format of our expert system

checking rule patterns.

All the facts information of the essential subsystem can be translated into facts format files,

one file for the expert system and one for the essential model. Another expert system syntax

checking file can be loaded with the facts file in the CLIPS/Ada working memory. As a whole,

those files should be able to include all the information provided by the facts file and provide

necessary error messages and editing suggestions for the user to save their manual labor of checking

the syntax and consistency of the user's IDEFO hierarchy diagrams.

'15

IV. HIGH LEVEL DESIGN

Introduction

The purpose of this chapter is to present and justify the preliminary software design for the

IDEFO Diagram Translator (IDT) and the IDEF0 Syntax Expert System (ISES). The idea and

principles of SADT is followed throughout the design process. The IDT is an object called the

"Essential Fact Utility" and is implemented in the Essential Model. The ISES is a CLIPS file

containing all the knowledge base of the syntax checking rules. The IDT is a set of Ada procedures

to extract the data in Essential Model data structure and put this data into individual data facts

files. The emphasis here focuses on the design and implementation of the Syntax Expert System

checking rules. There are four stages in expert system development:

1. prc*.em selection

2. initial prototype

3. expanded prototype

4. delivery system (7:23)

The design of the IDT and the expert system are currently developed. But., the facts format

resulting from the IDT is the data format of the expert system. So the implementation of the

expert system heavily depends upon the implementation of the IDT.

The Essential Model of SAtool II is not complete. The Syntax Expert System will be tile

initial prototype of the expert system as a subsystem of the SAtool II. The user should be able to

create their hierarchical IDEFo diagrams, store and restore their file and perform syntax checking

functions using The Essential Model.

The underlying efforts for this thesis investigation include the development of t he knowledge

for understanding the background of SAtool 11, the data structure of the Essentid Model and the

46

application of knowledge based systems. Since AI systems do more than process data for the user;

they use knowledge to improve their functionality. Expert systems navigate through knowledge

bases to solve problems and build new paths around rules and data. Knowledge development,

that's the real answer(2:5).

Previous Study Considerations

The Sun3 and the Sun4 workstations using the SunOS and the SunView window-based en-

vironment are required for this tool. Also the IDEFO validation tool is implemented with Ada in

order to translate the essential model IDEFO diagrams into CLIPS/Ada readable facts format. It

is implemented as an Ada object called Essential Fact Utilities.

The expert system syntax checking functions developed in (16) has only validated its feasi-

bility. Much more syntax checking rules are to be implemented, especially for the consistencies of

boundary arrows between a parent and its child diagrams. Once the two main objects are com-

pleted, they will be integrated into the Essential Model together with the CLIPS/Ada performing

the syntax checking functions in SAtool II.

IDEFo Dzagram Translator

The translator is used to translate the IDEF0 graphical features extracted from the Essential

Model Object managers into a set of facts formatted for output to a file for permanent storage or

for input to the CLIPS/Ada working memory for syntax checking. It is required to be implemented

in Ada language. Ada is a strongly typed, high level language based on a set of casily undorstood

concepts, such as data abstraction, information hiding, and strong typing. In a sense, Ada is a

language that directly embodies many modern software engineering constructs and is therefore an

excellent vehicle with which to express programming solutions (4.4). The Flow diagra for the

IDEF 0 diagram translator is illustrated in Figure 17.

47

Consifacts fil

ICRelation Retrieve/Restore 1

Manager IMRelation io-a

Facts

Figure 1. Flow Dagram ef r ieve/RDiagrame asa

Proj ct roj ct roj ct-ac8

Because there are seven Objects Classes and Attributes Based on the Essential Data Model.

So there are seven sets of Retrieve and Restore procedures for each of those seven object classes.

* ICOM Relation Manager

" Project Manager

" Activity Manager

" Data Element Manager

" Iistorical Activity Manager

* Calls Relation Manager

* Consists Of Relation Manager(16)

All those procedures are within a package named EssentiaLFact_Utzlitzes. Through interfacing

with the object Essential1 in the data model, each set of the facts extracted from the managere

are given a name by the statement "(deffacts the-name-of-the-facts (fact-i) (fact-2)...)", in the

package EssentialIO. Where the 'deffacts' is a CLIPS construct for naming a facts file. Thus

the facts extracted fron the ICOM-Relation.M1anager will output a file name icom-relation-facts

following a set of facts extracted from the manager The seven manager names and their facts

names stated by the EssentialIO in addition to their facts attributes is listed in Table 1. This

format is initiated by (16) and completed in this investigation. Notice: those fields in parenthesis

with capital letters means a fact variable to be extracted from the managers. To understand the

meaning of those attributes and the value of fact's variables should refer to (16).

If any variable in the Essential Model is empty, than the Fact-Utility will input a "null"

string into the facts format. If the fact. t.o he extracted is not empty and midt-i-field, like activit.y

descriptions, than the i,. for Lssential Model will save all the lines of the description and the file

for the CLIPS working memory will only save a 'not-null' for the syntax checking expert system.

The expert system needs only to know that, the descritlon is not, null. Rememebr that the facts

'19

format created by the EssentialFactUtility creates all the facts input by the user for the IDEFo

diagrams. It does not show the boundary arrow data element relations between any parent and its

child activities.

An arrow in the IDEF0 diagram may connect with functions on the drawing at both ends

is called an intermediate arrows. If one of the ends may be unconnected, it represents a boundary

arrow. Boundary arrows indicate that the information is produced or consumed beyond the scope

of the particular drawing. Boundary arrows at the A-0 level are referred to as external arrows which

represent constraints of the external environment and outputs to that environment. An important

aspect of maintaining completeness and consistency in an IDEF0 model is to make certain that

all such boundary arrows match between a box and its lower level decomposition. As listed in

Table 1, the ICOM codes are represented as 'i' for input, 'c' for control, 'o' for output and 'm' for

mechanism which represents the ICOM relation of the data element arrows to the activity. They

must be based on the relative positions of the arrows on their parent diagram where they meet the

edge of the parent box. Thus a particular boundary arrow of a child diagram should have the same

ICOM code as their parent diagram. Furthermore, a tunneled arrow represents a discontinuity

that a constraint may arise that was not shown on the parent funct:on or a constraint may not

be appropriate at lower levels of detail. A new constraint that was not presented on the higher

level diagram is shown as a boundary arrow with parentheses "()" around its unconnected end.

Any constraint that is not represented in a lower level decomposition is indicated with parentheses

where the arrow attaches to the appropriate box.

For the intermediate arrows, there are two special representations:

1. feedback occurs when the output of each function provides ln input constraint to the other.

2. iteraton occurs when the output of each function provides a control constraint to the other(20:13-

30).

50

But the two special representations are not within the scope of this thesis research, since

those are not implemented in the Essential-Model. The focuses here is concentrated on the im-

plementation of the IDEF0 diagram translator for the data elements that can be created in the

Essential-Subsystem.

The boundary arrow relationship between an IDEF0 parent diagram and its child diagrams

will be created by the Expert System Syntax Checking rules before actual hierarchical syntax check-

ing took place. More details are discussed later in Chapter 6.

Since the Essential Model developed in (16) was following an Object Oriented Design and

Implementation technique, the EssentialFactUtility is implemented as an object in the Essential

Model, as defined in (25:14-15). An object is an abstraction of a set of real-world things such that:

" all of the real-world things in the set-the instances-have the same characteristics.

" all instances are subject to and conform to the same rules.

The facts format to be created is a set of real-world things to be manipulated by the Syntax Expert

Checking Rules thus a series of "expert advises" will be derived for the user of the tool.

Retrieve Procedures. Because all the data of the IDEF0 diagrams created by tile SAtool II user

is stored as an Ada record in the Essential Model, the Retrieve Procedures are a set of operations

which iterate through all the data structures of the Essential Model. The data structures data

records will be Extracted by the retrieve procedures and put those data records into a specified

facts format in which each column is strictly defined according to the data element data type in

the Environment Types of the Essential Subsystem. The features of Ada language was specified in

the book "Ada as a second language" (8).

Each object class in the Essential Model will have a set of facts extracted from the data

structure and a given facts name by (deffacts) as illustrated in Table 1. The facts format is

readable to the CLIPS/Ada syntax checking rules. Ths, all the struictures and data elements of

51

Table 1. Object Classes Managers and Facts Format Extracted by Essential-FactUtilities

Object Class/Manager facts format created
ICOM Relation (deffacts icom-facts

(icom-tuple Activity Data-Element ICOM PairId)
(icom-activity-inputs Activity-Name #)
(icom-activity-control Activity.Name #)
(icom-activity-output Activity-Name #)
(icom-activity-mechanisms Activity-Name #))

Project (deffacts project-facts
(project-name Project-Name))

Activity (deffacts activity-facts
(act-name Name)
(act-numb Name Number)
(act-desc Name Description)
(act-has-child Name Child)
(act-ref-type Name Reference-Type)
(act-ref Name Reference)
(act-version Name Activity-Version)
(act-ver-chg Name New-Version)
(act-date Name Date)
(act-author Name Author))

Data Element (deffacts data-element-facts
(data-element-name Name)
(data-element-type Name Data-Type)
(data-element-minimum Name Minimum)
(data-element-maximum Name Maximum)
(data-element-data-range Name Data-Range)
(data-element-values Name Values)
(data-desc Name Description)
(data-ref Name Reference)
(data-ref-type Name ReferenceType)
(data-ele-ver Name Version)
(data-e-v-chg Name Version-Change)
(data-ele-date Name Date)
(data-ele-author Name Author))

Historical Activity (deffacts historical-activity-facts
(historical-tuple Project ActivityNumber))

Calls Relation (deffacts calls-relation-facts
(calls-relation-tuple Activity Project ActivityNumber))

ConsiaLs Of Relation (deffacts consists-of-relation-facts
(consists-of-name ID Parent Child))

52

the users IDEFo diagram should be i 'uded in the facts file for syntax checking. Even if the user

does not input any data for the IDEFo diagrams, the procedures should give a 'null' string at the

appropriate position in the facts format. An example of its actual output stored for the Essential

Model but with only the project name, one activity, one data element is on the following page.

Notice its relation and difference with Table 1. In which, Table 1 is the requirements of the facts

format of the EssentiaLFact_ Utility that should be translated from the seven Object Class Managers.

The name of each set of facts is named by the EssentialIO with a (deffacts facts-name (fact) (fact)

.,) statement. While the actual translated output was implemented with all the facts in between a

header and an ending of the facts file.

Restore Procedures. In contrast with the Retrieve procedures, the Restore procedures are only

those operations that iterate through the facts file and put all the facts back into the Essential

Model, the format to restore each piece of fact must be exactly the same as they were as defined in

the previous Retrieve procedures, otherwise, an exception is raised and the program stops execution.

IDEFo Syntax Expert System Compoicuts

The Inference Engine Selected. The inference engine of shell selected for this thesis research

is CLIPS/Ada. It is an Ada version of CLIPS, which stands for "C Language Integrated Production

System". The selection of shell for the development of any particular expert system has always been

a kind of question. "Not a single existzng shell will satisfy all the necessities of the developers

needs," (7:21-25).

In the technical literature and common usage, expert system shells can lie anywhere on
a continuum fiora inteipieters of relatively simple languages to very elaborate devel-
opment environments. Each has its own purposes and strengths and can complement
other shells by being used at different times in a project's life cycle.

53

;; SAtool II - IDEFO Essential Fact File - CLIPS Readable Format

;; Date and Time of File Creation 02/25/91 22:24:11

;;**START ALL FACTS**

(deffacts icom-facts
(icom-tuple Format-Example Format-Data c)
)
(deffacts project-facts
(project-name Format-Example)
)
(deffacts activity-facts
(act-name Activity-Name)
(act-numb Activity-Name null)
(act-desc Activity-Name null)
(act-has-child Activity-Name null)

(act-ref-type Activity-Name null)

(act-ref Activity-Name null)

(act-version Activity-Name null)

(act-ver-chg Activity-Name null)
(act-date Activity-Name null)
(act-author Activity-Name null)
)
(deffacts data-element-facts

(data-element-name data-format)

(data-element-type data-format null)
(data-element-minimum data-format null)

(data-element-maximum data-format null)

(data-element-data-range data-format null)

(data-element-values data-format null)
(data-desc data-format null)

(data-ref dataformat null)
(data-ref-type data-format null)

(data-ele-ver data-format null)

(data-e-v-chg data-format null)
(data-ele-date data-format null)

(data-ele-author data-format null)
)

(deffacts historical-activity-facts
(historical-tuple Format-Example AO)
)
(deffacts calls-relation-facts

(calls-relation-tuple Call-Activity Format-Example AO)
)

(deffacts consists-of-relation-facts
(consists-of-name 1 Format-Data formatted-data)
)
;;**END ALL FACTS**

54

All the shells have four features in common:

1. the minimum feature set of a knowledge representation scheme

2. an inference or search mechanism

3. a means of describing a problem

4. a way to determine the status of a problem while it is being solved(7:21-22)

Here, in this research, the problem to be solved is represented in a set of facts lists translated

from the Essential Model Data Structure. Each fact has limited number of fields. The knowledge

base is another file of rules that will be activated by the inference engine, examining, featuring, and

changing the status of the problem until there is no rule eligible to be applied. Thus, a set of certain

results is derived through the process and expert suggestions is introduced to the user.

Knowledge Base. Knowledge base is the heart of an expert system. It contains the problem-

solving knowledge of the particular application. CLIPS was selected as the shell tool for this thesis

research. The designer of an expert system should have a full understanding of both all the applh-

cation techniques of a knowledge base (21), and all the details in the problem domain. Thus, the

knowledge base will be able to reflect all the necessary characteristics intended. In the development

of an expert system, all the knowledge bases implemented are in the form of if ...then rules. A rule

is a collection of conditions and the actions to be taken if the conditions are met. The developer of

an expert system defines the rules which describe how to solve a problem. The entire set of rules in

an expert system is called a knowledge base. Some good examples are illustrated in (22) about

CLIPS rule developing guides.

The knowledge base here is requircd to check the IDEFo syntax features like: each activity

should have a name, number, description, each activity box should have at least one control and

one output arrow; the parent activity boundary zcom arrows should be consistent wzth their child

activities boundary arrows, etc.

55

The knowledge base must be able to derivc the relationship between a parent diagram and its

child diagrams. It cannot check all the required features directly from the facts created by the Es-

sentizalFact_ Utility. Hierarchical rules in the knowledge base to build up boundary relations between

any particular parent and zis child diagrams through the fact created are necessary.

If any syntax inconsistencies were found by the knowledge base, an appropriate message should

be provided to the user of the condition detected. through which, the user could easily go back to

correct the errors in his file without time consuming and error pruning manual checks.

As the IDEFo syntax does suggest that any parent activity should not have more than six child

activities, the rules to be developed here should consider those parent activities with two, three, four,

five and six child activities. But a set of rules should inform the user that any any particular activity

has more than six child activities.

Data Base (Working Memory). The data base contains a vroad range of information about

the current status of the problem being solved. The temporary)utpv, files of the IDEFo Diagram

Translator became the initial data base for the Syntax C'hecking Exlert System knowledge base. A

package named CLIPS Working Memory Interface in the Essential Model is the only object that has

direct interface with the CLIPS/Ada. All the related files must through this interface to accomplish

the Expert System Syntax Checking functions(16:86).

While checking the IDEFo syntax, the data base also contains a list of rules that have been

examined and fired. The contents of the data base is volatile, the changing of its contents may very

well affect the execution of the knowledge base.

User Interface. The user interface allows the user ,o communicate with the system and also

provides the user with an insight into the problem-solving proccss carried out by the infernec engine.

The user interface adopted here is the menu seldcet.iu,, in the Eesntal Model. The adcantages of

using a inecn-based interface arc as follows:

6

1. Users need not know the names of individual commands.

2. Typing effort is usually minimal.

3. It is impossible for users to put the system into an erroneous state.

4. Context-dependent help can be provided (26:265).

An example of the program test and demonstratwn through the menu selection user interface is

in Appendix D. The input file "thesis-err.esm" is an output facts file of the EssentiaLModel, it is

used to be restored back to the Essential-Model to check its IDBFo syntax. It was specially designed

to project the syntax checking abilities of the expert system. The resulted syntax checking error

messages are all commented with the origin of their errors.

Test Plan

A bottom-up testing methodology is used because IDEF Diagram Translator and IDEFo Syn-

tax Expert System are lower-level than Satool I. The testing steps are : unit testing, integration

testing, and validation testing(26:502). The Unit testing step focuses on each module individually

to make sure that its functions properly as a unit. Thus theIDT should have all its procedures

correctly executed and the facts file extracted from the Essential Model should be exactly the format

as defined.

For the level of syntax checking rules, each group of rule' is individually tested to make sure

that the behavior of its execution is under control and desired results will be t, -ated. Also an example

project of hierarch?calIDEFo diagrams provided in Chapter 2 named "Control Elevator", will be used

for validation testing on the over all functions of the system. Carefully designed errors, including

parent activities with 2, 3, 4, 5, and 6 child activities are expected to be drtected by the Expert System

Rules The same set of IDEFo diagrams but with designed error znputs is also presented in contrast

with the sample IDEFo diagrams. Those errors are analyzed and explained with added comments

in Appendir D: SAMPLE ESSENTIA I "'IDEL IDEIo SYNTAX CEIICKING SCRIT'. Each

:)

syntax checking messages will be justified to prove that the system is functioning as it is designed

to be. Thus we will be confident that we are building the right product.

The total number of rules for syntax checking expert system is 198, not including 43 auxilary

rules. A subset of the names of the rules in the rule base is listed below, it is listed as an example

for the overview of the rules been implemented. The complete file of rules and their implementation

is in Appendix C.

1. print-introduction

2. print-project-name

3. exit-if-error

4. no-error-congratulate

5. zero-outputs

6. zero-controls

7. too-many-mechs

8. too-many-outputs

9. too-many-controls

10. too-many-inputs

11. null-project-name

12. null-activity-number

13. null-activity-description

14. too-many-child ren-levell

15. too-inany-children-level2

16. too-many-child ren-level3

17. parent-2child

18. parent2-boundary

19. child2-boundary-childl

20. child2-boundary-child2

21. clear-2child-mid

22. removc-2child-2boundary

23. rid-2child-2consists

24. check-2child-parent

25. check-2child-parent,-consists

26. check-2child- pa rent-icon

27. check-2child-child

28. parent2-icom-c

29. parent2-icom-o

30. parent2-icom-i

31. parent2-icom-m

32. parent2-control-add

33. parent2-output-add

34. parent2-input-add

35. parent2-mech-add

36. child2-icom-c

37. child2-icom-o

38. child2-icom-i

39. child2-icom-m

40. child2-control-add

41. child2-output-add

42. child2-input-add

43. child2-mech-add

44. check-parent-2child-control

45. check-parent-2child-output

46. check-parent-2child-input

47. check-parent-2child-mech

Summary

Thzs chapter presented a high level software design for the IDEFo Diagram Translator and the

IDEFo Syntax Expert System. The facts format to be created by the translator and to be checked by

the expert system are described. The concept of an Expert System was explained and the knowledge

base to be zmplemented for the expert system in this research was analyzed both on zts functzonal

basis and on its structure.

The prelim2nary test destqn erpectahons were zntrmdned Thr, pranide a guide to the low

level design in the next chapter. A list of the name of a subset of those rules is summartzed as

follows: The rules name hsted here only shows a parent activity having two child activities. For

those paret activities with thrce to si; child activittes, the rules name are not shown hcre, but

59

their names art similar, except the changing of the number in those rule names indicate that this

rule is for a parent activity with that number of chzld activities. Also, more intermediate rules are

needed for those rules. The increasing of ch2ld number increases the complexity 27 implementing

those rules.

60

V. DETAILED DESIGN, IMPLEMENTATION, AND TESTING

Introduction

This chapter discusses the low level design and implementation of the IDEFo Diagram Trans-

lator and the IDEFo Syntax Expert System specified in the previous chapter. As mentioned previ-

ously, the facts format to be created by the IDT must be correct before further effort is expended

to implement the syntax checking rules for the Expert System. Those facts are the initial data base

(working memory/knowledge base) for the IDEF0 Syntax Checking Expert System.

The construct of syntax checking rules has been discussed in chapter 4. The rationale and

detailed implementation of those rules is explained in this chapter.

IDEF0 Diagram Translator Implementation

The IDEF 0 Diagram Translator is implemented as an Ada package named

EssentialFactUtility. It has seven pair of Retrieve and Restore procedures. Since the procedures

for ICOM relations and Project name are already completed in (16), the remaining work will have

to complete the following procedures:

1. Activity:

* Retrieve Activity Facts

" Restore Activity Facts

2. Data Element:

* Retrieve Data Element Facts

" Restore Data Element Facts

3. Historical Activity:

* Retrieve Ilistorical Activity F'acts

* Restore Historical Activity Facts

4. Calls Relation:

61

* Retrieve Calls Relation Facts

* Restore Calls Relation Facts

5. Consists Of Relation:

" Retrieve Consists Of Relation Facts

" Restore Consists Of Relation Facts

The facts file created by this package will carry a '.esm' extension. Its format has already

shown in Table 1. The file EssentialFactUtility is presented in Appendix B.

Its relations and visibility with the other Ada objects in the Essential Model in addition to

the syntax checking rules file is illustrated in Figure 18.

Expert System Syntax Checkzng Rules Design

The process to develop a rule based expert system has many steps:

* planning

* scheduling

• chronicling

" analysis

" configuration management

" resource management

First the feasibility of this approacii is demonstrated in (16). A design goal was set to implement

IDEFO syntax checking expert system for SAtool II. The facts translated to represent IDEFO

diagrams consists of one or more fields enclosed in matching left and right parentheses. Refer to

Table 1.

The relative position of each field in a fact translated by IDEF 0 Translator is strictly defined.

The space between each field might be difrerent. but they % ill be neglected by CLI PS if tne spaces are

62

Facti Dat Hitria

len Project ";1s osst

Mange Maae Managr

Rullesfil

File18EsetaSbssesRctinanVsbhy

Proec

Control

. 1-5

Input Otu------- -- Verb-Activity-Name Output

1Number
0-5 1-6 1-5

5 ~ A
Mechanism

0-5

Figure 19. A Typical Activity Box Features

more than one. Some of the IDEFO Diagram syntax can be directly derived from the facts created

by the IDT, but in practice most of them cannot. The design process evolves as intermediate rules

are implemented to create the data facts needed to check particular IDEFO synta. For instance,

the number of boundary arrows between a parent activity and its child activities. To be successful,

the implementing techniques of CLIPS must be developed through out this effort. More efficient

rule sets are gained from the experience of the previous rules implemented. Thus structured and

related rule bases are expected to be developed in order to capture all the syntactical features of

IDEF0 diagrams.

IDEFo Diagram Syntax Analysis. Since the IDEFo system model consists of a series of hier-

archically related function diagrams, each function box has to have some required syntax features.

Also the relation between a parent box and its child box must be consistent with each other.

Activity IDEFo Syntax. A typical activity box is shown is Figure 19. If any necessary

features for a box is missing, then its syntax is incorrect.

The IDEFO syntax for an activity box is:

641

" An activity box must have a name started with a verb.

" An activity box must have a number except the top-most level A-0 diagram.

" An activity box must have at least one control, one output but no more than five.

* An activity box may have zero to five input or mechanism.

" Except for the top-most level Context Diagram, there should no more than six boxes in a

diagram.

" Any arrows or data connected to the box should be named.

Boundary IDEFo Syntax. As mentioned in Chapter 4, the relative positions of a bound-

ary arrow of child activities must meet the edge of its parent activity. The boundary IDEFO syntax

for a parent activity and its child activities are listed below:

* A parent activity must have at least two bit no more than six child activities.

* The total number of input, output, control, or mechanism arrow(s) of a parent activity must

be the same as those of its child activities boundary input, output, control, or mechanism

arrow(s).

* Each boundary parent or child arrows must have a data name.

* The data name and icom relation of each boundary arrow between the parent and its child

diagrams should be consistent.

* Any boundary control and output numbers should not be less than one and more than five.

Unless a pipeline data item is used at the boundary.

* Any boundary input and mechanism numbers should not be more than five, but might be 0

At this point, we must remember that the intermediate arrows between activities will be the

boundary arrows for each individual activity. And should be the next lower level boundary arrows

of the child activities for that particular activity Noti':e the mid data elemnent, in Figurce 20.

65

MechaniOpu

Figure 2. Hierarhical Bo nro RlaisBewePrnalCldAivis

i n p u t m i

Syntaz Checking Environment. Since the (initial-fact) for any Working Memory always ex-

ists; the title message of the syntax checking environment is created by using this fact and with a

highest salience declaration to ensure that the environment will be created before any other mes-

sages. Right after this, the project name will be directly derived from the facts and presented after

the syntax checking environment message. It reads as follows:

**** Essential Subsystem Syntax Checking Messages *

* The project == Name-of-Project == is being checked:

After all the checking rules were fired, if no errors were discovered, than a. congratulatory

message will be presented, but a suggestion will also be presented to remind the user recheck the

logical structure of his work. Otherwise, when syntax error occurred, another rule with the lowerest

salience will be fired to halt the program preventing further rules firing. The control is returned

to the top-level program. This rule must be the last one to be fired, because we want to make

sure that all applicable checkings are all fired. Thus all information available to the user should be

presented before the prograr- halted.

Essential Model Facts Formal Analysis for Boundary Arrows. Since all the data elements

(arrows) related to an activity are only represented in the icom facts.

(icom-tuple Activity Data-Elenient ICOM PairId)

And the parent child relations between an activity and its child activities are represented in

the activity facts.

(act-has-child ParcntActivity ChildlActivity)

67

(act-has-child Parent.Activity Child2_Activity)

There is no direct trace of the boundary arrows of a particular parent activity and the

boundary arrows of its child activities. Thus hierarchical levels of rules must be developed before

actual syntax checking can be performed. But there are still some features of the IDEF0 syntax

that could be directly derived from the facts created by the IDT.

For instance, each activity box must have at least one control and one output; each activity

must have activity number, descriptions and the project must have a project name. Those

can be directly derived by the facts created by Retrieve and Restore ICOM Relation procedures in

the IDT:

(icom-activity-control Activity.Name #)

and

(icom-activity-output Activity-Name #)
(act-name Name)
(act-numb Name Number)
(act-desc Name Description)
(proj ect-name Proj ect-Name)

If any of those field are missing, then the IDT will put a 'null' in the appropriate field, thus

the checking of these missing fields are easier to implement. Say for activity description, if it is ill

than the fact should be:

(act-desc Activity-Name null)

If this facL pattern is iached by the LIIS of a rule inained "null-activity-description" with

only this pattern, and the 3rd field in act-desc fact is a null', then the RIIS action could be fired

(defrule null-activity-description

68

(act-desc ?activity-name null)

WARNING: ?activity-name has no description.

It must be mentioned that this is only an example to show the matching of a pattern in the

data base and a pattern in the LI1S of a rule. The CLIPS syntax for defining a rule is not strictly

followed here. Refer to Appendix C for the detail implementation of Syntax Checking Rules.

Translation Rules for Boundary Arrows. Since the boundary arrows cannot be directly de-

rived from the facts created by IDT, levels of rules are necessary for creating those facts between

each parent and their child diagrams. Recall the constraint that each parent should have at

least two but no more than six child diagrams. For each level of rules, there are five group of rules

for any parent activity with 2, 3, 4, 5, or 6 child activities. The relations between each parent and

its child activities are distinguished by the parent name derived from the facts:

(act-has-child Parent-Name Childl)
(act-has-child ParentName Child2)

are in the original state of the Essential Model showing a parent child relation. Since in

this example, the parent activity, Parent-Name, has only two child activities. A new parent/child

relation fact should be created as:

(parent2 Parent-Name Childl Child2)

This format, of fact should be created for any parent activity with two child activities at any level

of tile IDEF0 diagrams with different Parent-Name and child names.

Different parent and child boundary relations should also be created for syntax checking.

Those boundary facts might be created at different time and stored in different places in the

new fact lists created and asserted in the Working Memory.

69

AGE., "A

Figure 21. Pattern Matching: Rules and Facts

In rule-based languages, however, the matching process takes place repeatedly. Normally, the

fact-list will be modified during each cycle of execution. New facts may be added to the fact-list

or old facts may be removed from the fact-list. These changes may cause previously unsatisfied

patterns to be satisfied or previously satisfied patterns to become unsatisfied. The problem of

matching now becomes an ongoing process. During each cycle, as facts are added and removed,

the set of rules that are satisfied must be maintained and updated.

It is the rules that remain static and the facts that change. Thus, the facts should find the

rules(10:502-503).

As new facts are created, they might add new rules eligible to fire in the agenda, which is a

stack of rules eligible to fire. On the contrary, as facts are retracted from the facts list, the rules

to be fired in the agenda relating to those facts will also be retracted. See the Pattern Matching

relation of Rules and Facts in Figure 21.

High Level Creating Boundary Facts Rules. For the designing of hierarchical rules, care

must be taken to make sure that the execution of those rules are controlled. Groups of rules are

implemented. Thus some techniques or principles must be carefully followed:

1. All the variable names for each group of rules must be ustinct and esy to recognize

70

2. The ordering of patterns on the LHS of a rule should be carefully designed in accordance

with the facts sequence in the facts created by IDT to minimize change of states in order to

improve efficiency:

" most specific ,dttern go first

* patterns matching volatile facts go last

" patterns matching the fewest facts go first

3. Perform tests as soon as possible; which means any test patterns within a rule should be

placed as close to the top of the rule as possible.

4. Use a priority declaration pattern in a rule to aid in controlling the flow of execution.

5. Use simple rules vs complex rules; the key is to prevent the unnecessary comparisons from

occuring.

6. Reduce comparison by using temporary facts to store data(10:502-529).

To create th" joundary facts relations between any parent activity and its child activities,

the parent-child relation must first be created and stored in a single fact. This is accomplished by

a set of rules that create a set of facts each containing the name of a parent activity and its child

lists as in the example below:

(parent2 Parent-two-child Childl Child2)

(parent2 Parent-of-two Child-i Child-2)

(pareMt3 Parent-three-child Childl Child2 Child3)

(parent4 Parent-four-child Childl Child2 Child3 Child4)

(parentS Parent-five-child Childl Child2 Child3 Child4 ChildS)

(parent6 Parent-six-cbild Childl Child2 Child3 Child4 ChildS Child6)

71

With those facts created for each set of parent and child activities, the facts to create their

boundary relations could then be fired. Adding the pattern matching for icom-tuple, each activity's

name, data, icom relations might be created. Using the parent name as a key to keep track of any

particular parent-child relations, further data facts could be matched between each pair of parent

and child activities according to these facts.

For the child activities, it is a little more complex. Since the intermediate data arrows are not

boundary arrows. They must be cleared to be consistent with their parent activity. Many types of

intermediate arrows are to be considered for parents with 2, 3, 4, 5, and 6 child activities. Those

type of intermediate arrows are to be retracted from the created child boundary facts. Part of those

types are illustrated in Figure 22 as an example. The same or similar situations my be extended

to those different parents with different number of child activities.

For those intermediate data arrows that are the parent or child data of a pipeline data item,

no matter how many levels of pipeline data items may exists. Those pipeline data relations will be

stored in the Essential Model as consists-of-relation facts. Showing that a parent data is having at

least two child data, the intermediate pipeline arrows should also be retracted from the boundary

fact lists. Two types of consists of relation data arrow forms which is shown in Figure 23.

Low Level Szfhng/Adding Rules. Salience is suggested not to be excessively employed

when patterns can be used to express the criteria for selection(1O). Each level of rules must not fire

until its higher level rules have already created all the available facts needed to be matched for the

lower level of rules. Salience is explicitly used to control the sequence of rules execution. Which

means only after all the original boundary facts have already been created, then all the rules used

to eliminate intermediate arrows will be fired accordingly. Thus the intermediate arrows will be

sifted out of the child boundary arrow facts.

As an example, two different parent but with the same number of three child diagrams should

72

Parent Child Analysis

The out put of
extra childl, input of

child2, mid is
not a boundary

2 arrow.

The extra control

extra is only part of
control arrows,
it is considered

2 only one boundary
control arrow.

only those labeled

in 1 carrows are
boundary child

2, arrows.

in 2 "-out

hin Only those labeled
2arrows are

boundary arrows

for the parent

outi activity with
J- t6 child

S aut activities.

5 6
in 2

m

Figure 22. Intermediate Data Arrows Between Child Activities

73

god opinion 0

yes no

first

name m message

last D- status error data

Figure 23. Pipeline Consists of Data Arrow Relations

have their boundary arrow facts created as follows; the key to keep track of any parent and its child

relations is the parent-name in the second fields:

(parent3-boundary parent-a data-one c)
(parent3-boundary parent-a data-two o)
(parent3-boundary parent-a data-three i)
(parent3-boundary parent-a data-four m)

(child3-boundary parent-a child-i data-one c)

(child3-boundary parent-a child-2 data-two o)
(child3-boundary parent-a child-i data-three i)
(chi]d3-boundary parent-a child-3 data-four m)
and;
(parent3-boundary parent-b data-i c)
(parent3-boundary parent-b data-2 o)
(parent3-boundary parent-b data-3 i)

(child3-boundary parent-b child-one data-1 c)
(child3-boundary parent-b child-three data-2 o)

(child3-boundary parent-b child-one data-3 i)

Up to this point, only after the boundary facts are coriected created, then the ruies to create

boundary icom numbers could be correctly fired. The EM lel of icoin umnber rules will create

all the parent and child activity facts with the number of 1. For exanmple, a ,ingle boundary fact

74

created as:

(parent3-boundary Parent-name P-data c)
(parent3-boundary Parent-name data-P c)

Its icom number fact will be created as:

(parent3-icom Parent-name P-data control 1)
(parent3-icom Parent-name data-P control 1)

The parent activity with name Parent-name may have more than one control. The next

lower level rules will match the facts created and add them up to show the correct boundary icom

numbers for each parent and its child activities. Thus, the previous two parent3-icom facts will be

removed from the facts list, a new facts will be created as:

(parent3-icom Parent-name genl control 2)

Since we need only to keep track of the icom number here, the data associated with each

parent or child is not considered here. So they will be replaced by a different symbol created

by (gensym)1 in the proper field to make sure that this field in the newly created facts has no

duplicated data element in other facts. The name of the data is replaced by a series of symbols as,

genI, gen2,... as the rule continues on firing. The basic reason here is that all the data elements

in the data dictionary should have a different name. Again, the parents name is the key to keel)

track of the relation between a particular parent and its child activities.

Thus the final icom number facts for a parent may be stored in the facts lists as:

(parent3-icom Parent-name P-data control 3)

lgensyni is a CLIPS feature that will create different sy,.bo% for the iatdied data item foi ead firing of the rule

75

(child3-icom Parent-name C-data control 3)

Note the icom number for parent and child facts with the same parent name and the same

icom code, which is control here, should have the same number added. Otherwise it is an IDEFO

syntax error.

Hierarchical Consistency Checking Rules. Only after all the necessary facts for the boundary

arrow facts between parent activities and their child activities are correctly created. Then the

consistency checking rules are ready to be used.

The summary of those zf.-.then constructs for certain condition and appropriate action, are

illustrated in Table 2.

Notice that the absence of a particular fact in the created fact-list is useful for the syntax

checking rules. When a parent having a boundary data arrow with labeled data element name, but

its child activities does not have the same boundary data arrow, and the boundary is not a pipeline

data, then it is a syntax error. When the parent and its child activities having the same boundary

data arrow but with a different icom code, it is still a syntax error.

Through the process of IDEF0 diagram syntax checking, there are 5 types of messages that

might be provided to the user by the Syntax Checking Expert System. Those are summarized in

Table 3:

The structure and visibility between each set of rules are illustrated in Figure 24.

76

Table 2. if...then Construct for the IDEFo Syntax Checking Knowledge Base

if condition(s) then I action(s) Remarks

if an activity does then prompt the user The name should
not have a name a syntax error started with a verb

if an activity does then prompt the user The number should
not have a number a syntax error started with an A

if an activity does then prompt a warning A description is not
not have any about the situation required by the
description syntax

if an activity does then prompt the user at least one control is
not have any control a syntax error required for any activity

if an activity does then prompt the user at least one output is
not have any output then a syntax error required for any activity

if an activity has then prompt the user input and mechanism may
more than five a syntax error be 0-5 control and
input, output, oi tput must be 1-5
control or mechanisms

if a parent activity has a then prompt the user boundary data element
boundary data, but its a syntax error inconsistency between the
child diagrams does parent and its children
not have it

if a parent's boundary data then prompt the user boundary icom
icom code is different than a syntax error inconsistency between the
it's child's boundary data parent and its children

if the number of a parent's then prompt the user number of boundary data
boundary input, output, a syntax error inconsistency between the
control and mechanism is parent and it's children
different than its child's

71

Table 3. Possible Syntax Expert System Checking Results

number MESSAGES Remarks

No syntax errors was found. If no
syntax error facts was asserted after the

1 CONGRATULATORY: rules checking is done, then this message
will be presented at the end of all the
other messages.
Syntax error encountered, syntax error

2 ERRORS: fact will be asserted, program will be
halted after all the checkings are done.

3 WARNING: Some features of the users project work
were discovered that might cause problem.

4 NOTICE: Reminder to the user that something should
be carefully done.
Suggest the user that further manually

5 SUGGESTION: recheck might be helpful to find
logical errors that cannot be found by
the syntax checking rules.

78

Utility

RuulSe

rulues

Figue 24 S~ool I SytaxChecingR esvisiiliy newor

bondr

The SAtool II Syntax Expert System Syntax Checking IRules are in Appendix C. Total of 241

rules are implemented.

IMPORTANT NOTICE: Because the behavior of CLIPS control cycles, previously acti-

vated rules will be fired after those rules activated later than it was activated. If all the rules have

the same priority. The agenda for the activated rules is a first come, last out stack operation .

Which means first come (rules activated earlier), last out(will be fired later). Considering this, the

sequence of rules presented in the thesis is for the clarity to the readers. It is implemented and

grouped using another sequence in the Essential Model to gain efficiency in performing the Expert

system syntax checking functions.

Testing Expectations

A well designed testing procedures enables the software engineer to derive sets of input con-

ditions that will fully test all functional requirements for a program. This attempts to find errors

in the following categories:

" incorrect or missing functions,

* interface errors,

* errors in data structures,

" performance errors, and

" initialization and termination errors (15:4-10).

The program developed should be able to store all the user input I)EF0 data structures into a set

of facts format as shown previously, and the file could be restored back into the Essential Model

for further work or changing or permanent store. Only when all the facts are proven to bc correct,

then the Expert System could be expected to correctly perform its syntax checking abilities.

80

For the Expert System, a summary of the expected performance for the expert system are as

follows:

1. Does it contains all the required syntactical checking rules for the Essential Model?

2. Does it successfully create all the boundary arrow facts for various parent activities with

different number of child diagrams to perform further hierarchical consistency checks?

3. Does all the checking rules correctly reflect the syntax errors? Or does some of the rules had

been wrongly fired and caused errors thus confused the user?

Test Resuits Valdation

As mentioned in the Test Plan in Chapter 4, carefully designed errors in the example IDEF0

diagrams named "Control Elevator" was input as the SAtool II Essential Model test program. The

output '.esm' file was named as "thesis-err.esm" to be used in the validation test. In which, it

includes parent activities that has 2 to 6 child activities. Data inconsistencies was design between

each pair of parent and child activities. Also, icom code consistency, activity syntax, and number

of boundary icom consistencies together with checking the number of child activities are intended

to be reflected by the syntax checking expert system.

The reader of this thesis should refer to the original example IDEF0 diagrams in chapter

2, compare the error example in Appendix D and the syntax checking results to see that tile

program correctly performs its syntax checking functions.

The results of the syntax checking expert system based on the "error example" is summarized

as follows:

" Activity A2 was found has more than 6 child activities.

" Activity A265 Send-Signals has no description.

" Activity Checl._Destination needs at least. I control.

81

* Data inconsistency between parent activity. Sort-Signals data 'o' false.signals and its child

diagrams.

" Data inconsistency between child activity Send-Signals data 'o' signals and its parent.

* Data inconsistency between child activity Compare.Signals data 'c' not-confirmed and its

parent.

" Data inconsistency between child activity ClearDestinatio" data 'i no.stopped and its parent.

" Data inconsistency between parent activity Elevator-Control data 'o' signals and its child

diagrams.

" Data inconsistency between parent activity Elevator-Control data 'c' nojfloorsensor and its

child diagrams.

o icom inconsistency between activity Elevator-Control and its child diagram Check-Destination.

" Data inconsistency between child activity Sort-Signals data 'o' false.signals and its parent.

" Data inconsistency between child activity Monitor-Arrival data 'c' floor-sensor and its parent.

" Data inconsistency between parent activity StoreRequest data 'i' passenger-requests and its

child diagrams.

" Data inconsistency between parent activity Control-Elevator data 'c floor.sensor and its child

diagrams.

" Data inconsistency between child activity ElevatorControl data 'c' no-floor-sensor and its

parent.

" there might be an ERROR: The number of boundary controls of the parent activity Sort-Signals

is 1 control(s) less than its child boundary controls. Are there "consists of" data items at

boundary? Please recheck the syntax.

" there might be an ERROR: The number of boundary inputs of the parent activity Man-

ageDestination is 1 input(s) less than its child bound

82

* there might be an ERROR: The number of boundary controls of parent activity Eleva-

tor.Control is 1 control(s) more than its child activities. Are there "consists of" data items

at boundary? Please recheck the syntax.

* there might be an ERROR: The number of boundary inputs of the parent activity Eleva-

torControl is 1 input(s) less than its child boundary inputs. Are there "consists of" data

items at boundary? Please recheck the syntax.

* Data inconsistency between parent activity Manage-Destination data 'i' elevator-status and

its child diagrams.

All the intended syntax errors were reflected by the syntax checking expert system. In compar-

ison with the "error example" IDEF 0 diagrams one should notice that a data inconsistency between

a parent and child activities will raise two error messages. One by the "check..childparent" rule

and one by "check-child-child" rule. The reason for this is twofold, one is to double check the

consistencies between each pair of parent and child activities, the other is for the lowest level child

activities that has a data arrow inconsistent with its immediate parent activities, the second rule

is necessary to check its consistency with its parent activity.

Summary

In this chapter, the low level design and implementation of IDEF0 diagram Tlranslator and

IDEFo Syntax Expert Checking rules are explained. The component and levels of design process

are illustrated using both figures and tables. The expectations for the testing results together in

Appendix D will be examined to indicate validation of this thesis effort.

83

VI. CONCLUSIONS AND RECOMMENDATIONS

Introduciion

The purpose of this thesis investigation is to continue the design and implement an application

of expert system for checking the Essential Model SAtool II IDEFO syntax and produce an expert

system structure for applications using SADT. This chapter presents a conclusion and several

recommendations for future researchers.

Conclusions

This investigation is classified into two major categories: The full implementation of IDEFo

Diagram Translator (IDT) and IDEFo Syntax Expert System Rules. The translator for the IDEFo

diagram is used to translate the IDEFO graphical features extracted from the Essential Model

Object managers into a set of facts file. The fact file is formatted to output for permanent storage

or for input to the CLIPS/Ada working memory for syntax checking. All the facts are represented

as a set of parenthesized lists with different number of fields. The IDT was implemented in the

Ada language as a package in the Essential Model.

The IDEFo Syntax Expert System consists of the inference engine, the knowledge base, the

data base, and the user interface. The expert system shell selected was CLIPS/Ada which was

already integrated with the Essential Model as a subsystem in (16). The inference engine search

process applies the knowledge to the solution of a specific domain using logical reasoning. To check

IDEF0 syntax in any IDEFo hierarchical diagrams, the forward chaining control strategy is used.

It applies the knowledge base of the problem, manipulates the initial data base, modifies the data,

and derives a series of conclusions. The Expert System Rules file is 105 K bytes, and the pattern

matching for the syntax checking rules is both memory and time consuming. Even in a Mainframe,

where the Essential Model and all the related subsystems are, it takes minutes for the CLIPS/Ada

Working Memory to assert all the facts and another minute for the CLIPS/Ada to compile all the

84

rules. Then the Syntax Expert System could search through all the facts, change states, derive

final syntax expert suggestions.

The Expert System Syntax Checking functions produces correct checking results for the

IDEF0 diagrams with only single data items (constraint) used in the IDEF0 diagrams. Pipeline

data item can be very complex. A pipeline may contain several pipelines, and each single pipeline

inside it may contain many data items or even pipelines. Furthermore, pipelines could be a branch,

a join or a complex combination of both. It is almost impossible to implement CLIPS/Ada pattern

matching relations to check all the combination of levels of those pipeline parent and child or even

grand child pipeline data relation facts, eventhough a few typical conditions for pipeline data are

considered in this thesis effort. For those errors detected, the expert system reminds the user to

check if that -kind of error is caused by a pipeline data arrow.

In rule-based languages, the matching process takes place repeatedly. The fact-list is modified

during each cycle of execution. During each cycle, as 7acts are added and removed, the set of rules

that are satisfied must be maintained and updated. Having the inference engine check each rule to

direct the search for facts after each cycle of execution provides a very simple and straightforward

technique for solving this problem. The primary disadvantage of such a technique is that it can be

very slow due to the property called temporal redundancy. That is, the actions of a rule will

only change a few facts in the fact-list. Hence the facts in the expert system change slowly over

time. Each cycle of execution may see only a --mall percentage of facts either added or removed

and so only a small percentage of rules are typically affected by the changes in the fact-list. Thus

having the rules drive the search for needed facts requires a lot of unnecessary computation since

most of the rules are likely to find the same facts in the current cycle as found in the last cycle.

Unnecessary recomputation could be avoided by remembering what has already matched from cycle

to cycle and computing only the changes necessary for the newly added or removed facts (10.502-

534). Unfortunately, it is not a property of the expert system shell, CLIPS/Ada (the Ada version

85

of CLIPS 4.3). The Ada version of CLIPS 4.3 is undergoing enhancement by Computer Science

Corporation in Houston, Texas.

All the facts created for a specific hierarchical IDEF0 diagrams could be rather a large list.

It will take both time and memory to perform the associated syntax checking functions. So far,

the test program has 753 facts including activities that have 2, 3, 4, 5, and 6 child activities. It

is recommended that, once the Essential Model, Drawing Model and the Syntax Checking Expert

System of SAtool II has been proven to be applicable, the rules of the expert system are 'fixed'.

Then the compiling of those rules should be implemented and stored before the user selects Check

Syntax to gain time efficiency. Up to this point, the syntax checking expert system correctly checks

the IDEFO diagrams syntax with single data elements. It also checks the consistencies of pipeline

data elements to a limited extent. The overall function of this syntax checking expert system is

achieved. The implementation of syntax checking expert system into SAtool II is proved feasible.

Recommendations

Based on the results and experiences of this study, this section presents some recommendations

for future research which could lead to enhance the capability of both the Essential Model ar,2 the

Syntax Expert System.

Boundary Single Data Item. The rules developed here so far to check single data items

between parent and child activities has been successful. It is not likely at this point that there is

a possibility to simplify the rules that already exist as a result of this research. If a different tool

does, than it should be used in order to simplify the rule base so it will be easier to understand

and be more efficient.

Boundary Pipeline Data Items. As pipelines could be a very complex combination, not all

features are included here. More rules might be developed to feature the intermediate pipeline

86

data items, and check the consistency between parent activity and child activities where levels of

pipeline data item relations might exist.

Further IDEFo Diagrams Drawing Features. Some features of the IDEF0 diagrams which are

not included in the Essential Model created in (16) and thus not considered in the syntax checking

rules are also suggested:

" Expand the functions of the Essential Model to include tunnel arrows. Develop rules to check

the consistency of those features of drawing information.

For instance, since a tunnel arrow does not have the information of the relationships between

the attaching activity and its parent box. A tunnel arrow attaching an activity should have

an ID to show that this arrow is a tunnel arrow. Thus the checking of consistency should

check whether a missing boundary data element between a parent and its child diagrams is a

tunnel, if it is, than it is not a boundary syntax error.

" Establish a mechanism either in Essential Model or in Drawing Model to represent squiggles,

double arrows (feedback, and itcioi-) Expand syntax checking rules to include knowledge

about the specific application being developed.

" Modify the menu selection interface such that the user could make the selection directly from

the screen with a mouse.

" Use compiled rule base to improve efficiency of the syntax checking expert system.

87

Bibliography

1. Baker, Louis. Artificial Intelligence With Ada. New York: McGraw-Hill Publishing Company,
Inc., 1989.

2. Bell Atlantic Knowledge Systems, Inc. AI Get Real. Al Expert. P.O. Box 3528 Princeton,
New Jersey 08543-3528, 1991.

3. Booch, Grady. Software Components with Ada. Menlo Park, California: The Ben-
jamin/Cummings Publishing Company, Inc., 1987.

4. Booch, Grady. Software Engineering with Ada. 2727 Sand Hill Road Menlo Park, CA 94025:
The Benjamin/Cummings Publishing Company, In,., 1987.

5. Bowles, Adrion J. "A Note on the Yourdon Structured Method," ACM Software Engineerzng
Notes, 15(2):27 (April 1990).

6. Brassard, G. and P. Bratley. Algorithmics, Theory and Practice. Englewood Cliffs, New Jersey
07632: Prentice Hall, 1988.

7. Citrenbaum, Ronald and James R. Geissman. "Selecting a Shell," AI Expert, I(1):21-26
(September 1987).

8. Cohen, Norman H. Ada As a Second Language. New York: McGraw-Hill Book Company,
1986.

9. Davis, Alan M. Software Requirements Analysis and Specification. Englewood Cliffs, New
Jersey 07632: Prentice Hall, Inc., 1990.

10. Giarratano., Joseph. Expar,' Systems. 20 Park Plaza Boston, Massachusetts 02116: PWS-
KENT Publishing Company, 1989.

11. Humphrey, Watts S. Managing the Software Process. Menlo Park, California: Addison-Wesley
Publishing Company, 1990.

12. IntelliCorp. IntelliCorp KEE Software Development System User's Manual (3.3 Edition),
1986.

13. Johnson, Steven E. A Graphics Editor for Structured Analysis with a Data Dictionary.. MS
thesis, AFIT/GE/ENG/87D-128, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB 01, December 1987 (AD-A190618).

14. Jung, Capt(ROKAF) Donghak H. Design of a Syntax Validation Tool for Require-
ments Analysis Using Structured Analysis and Design Technique(SADT). MS thesis,
AFIT/GCS/ENG/88S-1, School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, September 1988 (AD-A202725).

15. Kim, Capt(ROKAF) Intaek. Expert System in Software Engineering Using Structured Analysis
and Design Technique(SADT). MS thesis, AFIT/GCS/ENG/90J-2, School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, June 1990 (AD-A??????).

16. Kitchen, Terry LeVere Captain USAF. An ObJect Oriented Design and Implementation
For The IDEFo Essential Data Model with An Ada Based Expert System. MS thesis,
AFIT/GCS/ENG/90D, School of Engineering, Air Force Institute ofTechnology (AU), Wright-
Patterson AFB OH, December 1990 (AD-A230814).

17. Korth, Henry F. and Abraham Silberschatz. Database System Concepts. New York: McGraw-
Hills, Inc, 1991.

88

18. Luger, George F. Artificial Intelligence and the Design of Expert Systems. 890 Bridge Parkway
Redwood City, California 94065: The Benjamin/Cummings Publishing Company, Inc., 1989.

19. Marca, David A. and Clement L. McGowan. SADT Structured Analysis and Design Technique.

New York: McGraw-Hill Book Company., 1988.

20. Materials Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems Com-
mand, Wright-Patterson AFB, 01. 45433. Integrated Computer-Aided Manufacturing (ICAM)
Function Modeling Manual (IDEFo), June 1981. Contract F33615-78-C-5158 with SofTech,
Inc.

21. NASA - Johnson Space Center - Artificial Inteligence Section. CLIPS Reference Manual:
Version 4.3 of CLIPS, July 1989.

22. NASA - Johnson Space Center - Artificial Inteligence Section. CLIPS User's Guide: Version
4.3 of CLIPS, August 1989.

23. Pearl, J. Heuristics. Menlo Park, California: Addison-Wesley Publishing Co., 1984.

24. Ross, Douglas T. "Structured Analysis (SA) : A Language for Communicating Ideas," IEEE
Transactions on Software Engineering, SE-3(1):27 (April 1990).

25. Shlaer, Sally and Stephen J. Mellor. Object-Oriented Systems Analysis. Englewood Cliffs,
New Jersey 07632: Prentice Hall, Inc., 1988.

26. Sommerville, Ian. Software Engineering. Menlo Park, California: Addison-Wesley Publishing
Company, 1989.

27. Sommerville, Ian. Software Engineering: Third Edition. Reading MA: Addison-Wesley Pub-
lishing Company ., 1989.

28. Tevis, Jay-Evan J. Machine-Indepedent Ada Windows and Enhanced Graphics for SAtool II.:.
MS thesis, AFIT/GCS/ENG/90D-?, School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1990 (AD-A2331239).

29. Tsai, Jeffrey J. P. and J. C. Ridge. "Intelligent Support for Specification Transformation,"
IEEE Software, 3(6):28-35 (December 1988).

30. Yourdon, Edward. Modern Structured Analysis. Englewood Cliffs, New Jersey: Prentice-Hall,
Inc., 1989.

89

AFIT/GCS/ENG3/91-J

AN ADA BASED EXPERT SYSTEM
FOR

THE ADA VERSION OF SAtool 11
VOLUME II: APPENDICES

THESIS

Min-fuh Shyong
Major, ROCAF

AFIT/GCS/ENG/91-J

Approved for public release; distribuition unlimited

AFIT/GCS/ENG/91-J

AN ADA BASED EXPERT SYSTEM

FOR

THE ADA VERSION OF SAtool II

VOLUME II: APPENDICES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Systems)

Min-fuh Shyong, B.S.C.S.

Major, ROCAF

DECEMBER, 1990

Approved for public reease; distribution unlimited

Table of Contents

Page

Table of Contents ii

Appendix A. CLIPS BEHAVIOR IN THE BLOCKS WORLD PROBLEM A-1

Appendix B. ESSENTIAL FACT UTILITIES B-1

Appendix C. CLIPS RULE BASE C-1

Appendix D. SAMPLE ESSENTIAL MODEL IDEFo SYNTAX CHECKING SCRIPT

F IL E . D -1

ii

Appendix A. CLIPS BEHAVIOR IN THE BLOCKS WORLD PROBLEM

In this example, the two stack of blocks is represented as facts format in CLIPS. A single

block may be stacked upon another block, the goal of a complex blocks world program would be

rearrange the stacks of block into a goal configuration with the minimum number of moves. For

this purpose, two restrictions are made:

1. Only one primary goal is allowed and this goal can only be to move one block on top on

another block. If the goal is to move block x on top of block y, then move all blocks (if any)

on top of block x to the floor and all blocks (if any) on top of block y to the floor and then

move block x on top of block y.

2. Any goal must not have already been achieved. That is, the goal cannot be to move block x

on top of block y if block x is already on top of block y.

Now we follow the step by step method of building a program mentioned in Chapter 2.

First: writing pseudorules using English-like text. We can figure out that there are only four kinds

of possible conditions needed to achieve our goal.

1. When both the top of x and y are clear, move x on top of y directly.

2. When something on top of x, then move something on top of floor first before move x on top

of y.

3. When something on top of y, then move something on top of floor first before move x on top

of y.

4. Move something on top of floor before the next move can be achieved.

In this case, x is considered as upper block and y is considered as lower block. Then the pseudo

code can be written as:

A-1

RULE Move-Directly
IF The goal is to move block ?upper on top of block ?lower and

block ?upper is the top block in its stack and
block ?lower is the top block in its stack,

THEN Move block ?upper on top of block ?lower

RULE Clear-Upper-Block
IF The goal is to move Block ?x and

block ?x is not the top block in its stack and
block ?above is on top of block ?x,

THEN The goal is to move block ?above to the floor

RULE Clear-Lower-Block
IF The goal is to move another block on top of block ?x and

block ?x is not the top block in its stack and
block ?above is on top of block ?x,

THEN The goal is to move block ?above to the floor

RULE Move-To-Floor
IF The goal is to move block ?upper on top of the floor and

block ?upper is the top block in its stack,
THEN Move block ?upper on top of the floor

Second: Based on the information given above, the blocks can be represented as stacks of

blocks and translated into initial knowledge for the program. The setting of the blocks is illustrated

in Figure n and its facts format is as follows:

(deffacts initial-state
(stack a b c)

(stack d e f)
(move-goal c on-top-of e)

(stack))

Finally: The pseuuorules were translated to CLIPS rules using the facts as a guide for

translation.

(defrule move-directly

A-2

A D

B E

C
F_

Floor

Figure A.l. Initial State of The Blocks World

?goal <- (move-goal ?bi on-top-of Mb)

?stack-1 <- (stack ?bl $?restl)
?stack-2 <- (stack Mb $?rest2)

(retract ?goal ?stack-1 ?stack-2)
(assert (stack $?resti))
(assert (stack ?bl Mb $?rest2))
(fprintout t ?b1 " moved on top of " ?b2 ."crlf))

(def rule move-to-floor
?goal <- (move-goal ?bl on-top-of floor)
?stack-1 <- (stack ?bl $?rest)

(retract ?goal ?stack-1)
(assert (stpck ?bi))
(assert (stack $?rest))
(fprintout t ?bl "moved on top of floor. crlf)

(defrule clear-upper-block
(move-goal ?bl on-top-of ?)
(stack ?top $? ?bI. $?)

(assert (move-goal ?top on-top-of floor))

(def rule clear-lower-block
(move-goal ? on-top-of ?bl)
(stack ?top $? ?bl $?)

A -3

(assert (move-goal ?top on-top-of floor)))

Now lets see the results of running CLIPS for the Blocks World program. Any text after';'

will be coments added.

CLIPS> (load "a:Blocks-World.clp")
Processing deffacts block initial-state
Compiling rule: move-directly +j+j+j
Compiling rule: move-to-floor +j+j
Compiling rule: clear-upper-block =j+j
Compiling rule: clear-lower-block =j+j
CLIPS> (facts)
CLIPS> (reset)
CLIPS> (facts)
f-0 (initial-fact)
f-i (stack a b c)
f-2 (stack d e i)
f-3 (move-goal c on-top-of e)
f-4 (stack)
CLIPS> (rules)
move-directly
move-to-floor
clear-upper-block
clear-lower-block
CLIPS> (run)
a moved on top of floor.
b moved on top of flcor.
d moved on top of floor.
c moved on top of e.
7 rules fired
Run time is 1.5390625 seconds
CLIPS> (facts)
f-O (initial-fact)
f-4 (stack)
f-6 (stack a)
f-9 (stack b)
f-12 (stack d)
f-14 (stack c e f)
CLIPS> (set-break move-directly)
CLIPS> (set-break move-to-floor)
CLIPS> (set-break clear-upper-block)
CLIPS> (set-break clear-lower-block)
CLIPS> (watch all)
CLIPS> (reset)
==> f-0 (initial-fact)
==> f-i (stack a b c)

A-4

> -2 (stack d e f)
==> f-3 (move-goal c on-top-of e)

==> Activation 0 clear-lower-block: f-3,f-2

-- > Activation 0 clear-upper-block: f-3,f-1

==> f-4 (stack)
CLIPS> (run)
FIRE 1 clear-upper-block: f-3,f-I
==> f-5 (move-goal a on-top-of floor)

==> Activation 0 move-to-floor: f-S,f-i

Breaking on rule move-to-floor
I rules fired
Run time is 0.328125 seconds
CLIPS> (run)
FIRE i move-to-floor: f-5,f-1
<== f-S (move-goal a on-top-of floor)
<== f-I (stack a b c)

==> f-6 (stack a)
==> f-7 (stack b c)
==> Activation 0 clear-upper-block: f-3,f-7

a moved on top of floor.
Breaking on rule clear-upper-block
i rules fired
Run time is 1.8203125 seconds
CLIPS> (run)
FIRE 1 clear-upper-block: f-3,f-7
==> f-8 (move-goal b on-top-of floor)

==> Activation 0 move-to-floor f-8,f-7

Breaking on rule move-to-floor
I rules fired
Run time is 0.3828125 seconds
CLIPS> (run)
FIRE 1 move-to-floor: f-8,f-7
<== f-8 (move-goal b on-top-of floor)
<== f-7 (stack b c)

==> f-9 (stack b)

==> f-1O (stack c)
b moved on top of floor.
Breaking on rule clear-lower-block
i rules fired
Run time is 1.59375 seconds
CLIPS> (run)
FIRE 1 clear-lower-block: f-3,f-2
==> f-li (move-goal d on-top-of floor)
==> Activation 0 move-to-floor: f-11,f-2

Breaking on rule move-to-floor
I rules fired
Run time is 0.328125 seconds
CLIPS> (run)
FIRE 1 move-to-floor: f-11,f-2
<== f-il (move-goal d on-top-of floor)
<== f-2 (stack d e f)

A-5

-- > f-12 (stack d)
==> f-13 (stack e f)
==> Activation 0 move-directly: f-3,f-10,f-13
d moved on top of floor.
Breaking on rule move-directly
I rules fired
Run time is 1.703125 seconds
CLIPS> (run)
FIRE I move-directly: f-3,f-iO,f-13

<== f-3 (move-goal c on-top-of e)
<== f-1O (stack c)
<== f-13 (stack e f)
==> f-14 (stack c e f)
c moved on top of e.
I rules fired
Run time is 0.4453125 seconds
CLIPS> (run)
0 rules fired
CLIPS> (facts)
f-0 (initial-fact)
f-4 (stack)

f-6 (stack a)
f-9 (stack b)
f-12 (stack d)
f-14 (stack c e f)
CLIPS> (agenda)
CLIPS> (reset)
==> f-0 (initial-fact)
==> f-I (stack a b c)
==> f-2 (stack d e f)

==> f-3 (move-goal c on-top-of e)
-> Activation 0 clear-lower-block: f-3,f-2
==> Activation 0 clear-upper-block: f-3,f-1
=> f-4 (stack)

A-6

Appendix B. ESSENTIAL FACT UTILITIES

-- DATE: 2/21/91

-- VERSION: 1.0
-- TITLE: Essential Subsystem EssentialFactUtilities Package --

-- FILENAME: es-factu.a

-- COORDINATOR: Dr. Hartrum-

-- PROJECT: SAtool II
-- OPERATING SYSTEM: SUN OS Release 4.1
-- LANGUAGE: Verdix Ada Development System (VADS) - Version 6.41 --

-- FILE PROCESSING: Must be compiled after es.genev.a, es.proj.a, --

-- es-activ.a, es-datel.a, es-conof.a, esICOM.a, es-hista.a, --

-- es-calls.a
-- CONTENTS: Package EssentialFactUtilities --

-- FUNCTIONS: This package contains two utility operations for each of--
-- the 7 packages that have a 'manager' in their names. --

-- SUMMARY OF RECENT MODIFICATIONS: --

-- 27 Oct 90: Added routines to retrieve and restore the project name.--
-- 10 Nov 90: Added routines to retrieve and restore a portion of the --

-- Activity Manager information.
-- 5 Dec 90 : Added routines to retrieve the Historical Activity Facts--
-- 7 Dez 90 : Added routines to retrieve the Cails Relation Facts --

-- 8 Dec 90 : Added routines to retrieve the Consists of Relation Facts-
-- 8 Dec 90 : Added routines to retrieve the rest portion of the --

-- Activity Manager information. --

-- 11 Dec 90: Added routines to retrieve and restore the data --

-- element facts
-- 21 Feb 91: All the Retrieve and Restore procedures tested and --

-- integrated with the Essential Model. --

-- --

-- DATE: 2/21/91
-- VERSION: 1.0

-- PACKAGE NAME: **ESSENTIAL FACT UTILITIES** --

-- LOCATED IN FILE: es-factu.a
-- PURPOSE: This package 's a collection of utility operations that --

-- interact with the managers. Each manager a 2 operations associ- --

-- ated with it:

-- 1. An operation that retrieves either state information or --

-- information destined for CLIPS, based on a flag setting. --

-- 2. An operation that accepts state information as facts and --

-- restores that information to the manager data structure. --

-- Warning: The operations in this package depend heavily on the --

-- specific column numbers of the stored information. An alternative --

13-I

-- to this methodology is to develop a parser to examine the fact -

-- strings.
-- PACKAGE VISIBILITIES REQUIRED: Project-MYanager, Activity-.Manager, -

-- Data..Element-Manager, Consists-.Of-Relation-.Manager, ICOM-.Relation --

-- Manager, Calls-.Relation-.Manager, Historical-Activity.Manager -

-- PACKAGE COMPOSITION: Specification and Body -

-GENERICS INSTANTIATED: None

-- ADT DESCRIPTION: N/A since this is a group of utilities. -

-- ORDER-OF:

-- Visible: Retrieve-.ICOW..Facts O~a * i) -

-- ~~~ O (i) time when type-.facts.f lag = true)-
-- Restore-ICOM-Facts O~i * i) -

-- Retrieve-.ActivityFacts O~a * max(x, z)) -

-- Restore-.Activity-Facts O~a * max~x, a * z)) -

-- Retrieve-.Project-.Facts O(W -

-- Restore-,Project-.Facts O(W -

-- Hidden: Padded-.String O(The-Size) -

-- where i is the number of icom relations, a is the number of -

-- activities, x is the number of lines in an activity description, -

-- and z is the number of children an activity has -

-- AUTHOR(S): Terry Kitchen and Min-fuh Sit;'ng -

-HISTORY: None (initial implementation)

with Text..jO;
with Activity-.Class, Act ivity-Manager;
with Data-Element-.Class, Proj ect-.Manager;
with ICOMRelation-.Class, ICOM-Relation-.Manager;
with Environment-Types;

with Historical-Activity-.Class, Historical-Activity-Manager;
with Calls-Relation-Class, Calls-Relationj-lanager;
with Consists-Of-.Relation-~Class, Consists-.O-Relation-Manager;
with Data-Element-Class, Data-.Element-.Manager;

package Essential-Fact-Utilities is

-Based on the type..facts-flag, the procedure passes a list of facts
-to be stored in a file or a list of facts to be placed in an expert
-- system.

procedure Retrieve-.ICOM-Facts
(Type-Facts-.Flag :in boolean;
Fact-Manager : in out Environment-.Types .Fact..Buffer-Package .Manager-Type);

-Takes an input buffer of ICOM facts and loads the information back
-- into the data structures.

procedure Restore-ICOM-.Facts
(The-.Fact-Buffer : in
Environment.Types .Fact-Buffer.Package.ManagerType);

B3-2

procedure RetrieveProjectFacts

(TypeFactsFlag : in boolean;
Fact-Manager : in out EnvironmentTypes.Fact_-BufferPackage.Manager-Type);

-- Takes an input buffer of project fact(s) and loads the information back
-- into the data structure.

procedure RestoreProjectFacts
(TheFactBuffer : in
EnvironmentTypes.FactBufferPackage.ManagerType);

procedure RetrieveActivityFacts
(TypeFactsFlag : in boolean;
Fact-Manager : in out EnvironmentTypes.FactBufferPackage.ManagerType);

-- Takes an input buffer of activity facts and loads the information back
-- into the Activity-Manager. It must be modified to restore all the
-- activity facts once the RetrieveActivityFacts operation is completed.

procedure RestoreActivityFacts
(TheFactBuffer : in
EnvironmentTypes.FactBufferPackage.ManagerType);

-- The project manager at this time only stores a single name; however,
-- in the future it could hold multiple projects.

procedure RetrieveDataElementFacts
(TypeFactsFlag in boolean;
Fact-Manager in out

EnvironmentTypes.FactBufferPackage.ManagerType)

procedure RestoreDataElementFacts

(TheFactBuffer : in
EnvironmentTypes.FactBufferPackage.ManagerType)

-- ****************** 5 ************************

procedure RetrieveHistoricalActivityFacts

(Type-FactsFlag in boolean;
Fact-Manager in out

EnvironmentTypes.FactBufferPackage.Manager-Type)

B-3

procedure RestoreHistoricalActivityFacts
(TheFactBuffer: in
EnvironmentTypes.FactBufferPac,age.ManagerType)

procedure RetrieveCallsRelationFacts
(TypeFactsFlag in boolean;

Fact-Manager : in out
EnvironmentTypes.FactBufferPackage.ManagerType)

procedure RestoreCallsRelationFacts
(TheFactBuffer : in

EnvironmentTypes.FactBufferPackage.ManagerType)

-- ***************************** 7 **

procedure RetrieveConsistsOfRelationFacts
(TypeFactsFlag in boolean;
Fact-Manager in out

EnvironmentTypes.FactBufferPackage.ManagerType)

procedure RestoreConsistsOfRelationFacts
(TheFactBuffer : in

EnvironmentTypes.FactBufferPackage.ManagerType)

end EssentialFactUtilities;

package body EssentialFactUtilities is

-- DATE: 10/23/90
-- VERSION: 1.0

-- NAME: *****FUNCTION PADDED STRING***** --

-- MODULE NUMBER: TBD

-- DESCRIPTION: A utility function to pad blanks to the front of a --

-- of a string to reach a desired size.

-- ALGORITHM: A simple if then else jith one embedded loop construct. --

-- PASSED VARIABLES: The-String, The-Size
-- RETURNS: string
-- GLOBAL VARIABLES USED: None
-- GLOBAL VARIABLES CHANGED: None

B-4

-- FILES READ: None

-- FILES WRITTEN: None

-- HARDWARE INPUT: None

-- HARDWARE OUTPUT: None

-- MODULES CALLED: None
-- CALLING MODULES: TBD

-- ORDER-OF: O(TheSize)

-- Note that all slice operations are modeled as 0() time. --

-- AUTHOR(S): Terry Kitchen
HISTORY: None (Initial Implementation)

function PaddedString(TheString : in string ; The-Size : in natural)
return string is

-- Local De,7larations --

Result-String: string(l..TheSize);
Start-Position: natural;
begin
if The-Size <= TheString'length then

StartPosition:= TheString'length - The-Size + 1;
-- Slice operation is modeled as 0(1) time.
ResultString:= TheString(Start_Position..TheString'length);

else
StartPosition:= The-Size - TheString'length + 1;
ResultString(StartPosition..TheSize):= The-String;

-- worst case here - start-position is (The-Size - 2)

-- Thus, O(TheSize) time in the worst case.
for i in 1..(StartPosition - 1) loop

ResultString(i):= '

end loop;

end if;

return Result-String;
end Padded-String;

-- DATE: 10/23/90

-- VERSION: 1.0
-- NAME: ***PROCEDURE RETRIEVE ICOM FACTS***
-- MODULE NUMBER: TBD
-- DESCRIPTION:

-- When the flag TypeOf_FactsFlag is set to true,it means the --

-- client procedure wants all the facts that are necessary for --

-- the .esm file. If the flag is false, then the facts for --

-- the expert system are returned. Facts of the same type have --

-- the same format no matter where they are destined. In this --

-- case, one extra type of fact is returned if the destination --

-- is the an expert system (icom count fact). --

-- icom tuple facts: (retrieved when creating a .esm file or when --

-- performing check syntax) --

-- 1) a predefined attribute name (icom-tuple) --

-- 2) an activity name
-- 3) a data element name

-- 4) an icom code (i,c,o, or m)
-- 5) and id number (an integer)

-- icim count facts: (retrieved only when destination is CLIPS) --

-- 1) a predefined attribute name (e.g., icom-activity-inputs) --

-- 2) an activity name
-- 3) an integer number representing the input count e.g. --

-- ALGORITHM: One while loo, extracts the ICOM facts. A second loop --

-- which contains an O(i) pLicedure call is used to extract additional--
-- facts based on the contents of two different managers. --

-- PASSED VARIABLES: TypeFactsFlag, Fact-Manager --

-- RETURNS: None
-- GLOBAL VARIABLES USED: None
-- GLOBAL VARIABLES CHANGED: None

-- FILES READ: None

-- FILES WRITTEN: None

-- HARDWARE INPUT: None

-- HARDWARE OUTPUT: None
-- MODULES CALLED: None

-- CALLING MODULES: TBD
-- ORDER-OF: O(a * i) where 'a' is the number of activities and 'i' --

-- is the number of tuples in the ICOM relation manager. --

-- Note that all slice operations are modeled as 0() time. --

-- AUTHOR(S): Terry Kitchen
HISTORY: None (Initial Implementation)

procedure RetrieveICOMFacts
(TypeFactsFlag : in boolean;
Fact-Manager : in out Environment-Types.

FactBufferPackage.ManagerType) is

-- Local Declarations --
Fact..Pointer: EnvironmentTypes.Fa'tBufferPackage.IteratorType;
A-Fact: EnvironmentTypes.FactStringType;
Blank-Fact: EnvironmentTypes.FactStringType:= (others => '

-- Activity Related Declarations --

Act-Name: ActivityClass.ActivityNameType;
TheActRecord: ActivityClass.ActivityRecordType;

-- ICOM Related Declarations --

ICOMRelationRecord: ICOMRelationClass. ICOMRelationRecordType;
ICOMRelationPointer: ICOMRelationManager. ICOMRelationPointerType;
ICOMCode: character; -- a character 'i', 'c', lo', or 'm'.
ICOMPairId: natural;

Inputs, Outputs, Controls, Mechanisms : natural:= 0;

13-6

begin
-- Clear the passed in fact-manager.
EnvironmentTypes.FactBufferPackage.Clear(FactManager);

-- Retrieve the state information from the tuples regardless of the
-- flag setting.
-- Set pointer to beginning of manager.
ICOHRelationHanager.ResetICOMRelationTupleIterator;

-- Engage O(i) loop to extract the icomtuple facts. The facts
-- cxtracted will have the format discussed above. If there are
-- no ICOM tuples, this loop won't execute and an empty buffer is the
-- result.
While not ICOMRelationManager.ICOMRelationTupleIteratorDone loop

-- Get a record.
ICOMRelationRecord:= ICOMRelationManager.

ValueOfICOMRelationTupleAtIterator;
-- Place the record into a fact string at specific positions.
-- Initialize the fact string to all blanks first.
-- All string assignments are modeled as 0(1).
AFact:= Blank-Fact;
AFact(1..10) ="icom-tuple";
AFact(11) : ' ;
AFact(12..36) ICOMRelationRecord.Activity;
AFact(37) ' ;
AFact(38..62) ICOMRelationRecord.DataElement;
AFact(63) ' ;
AFact(64) ICOMRelationRecord.Relationship;
AFact(65)
AFact(66.,.71)
PaddedString(integer'image(ICOMRelationRecord.PairId), 6);

-- Store this fact in the fact buffer.
EnvironmentTypes.FactBufferPackage. AddItem

(AFact, Fact-Manager, Fact-Pointer);
-- Advance pointer to next ICOM tuple in manager.

ICOMRelationManager.AdvanceIteratorToNextICOMReiationTuple;
end loop;

-- Facts for expert system only.
-- Perform check here to determine if ICOM counts are requested.
if TypeFactsFlag = False then

-- For each activity, need to determine the number of inputs, outputs,
-- controls and mechanisms. So, engage loop to get an
-- activity name then use the name to determine the ICOM counts.
-- Loop executes a times with an O(i) procedure call. Thus, the
-- order-of is O(a * i).
ActivityManager. ResetActivityIterator;
while not ActivityManager. ActivityIteratorDone loop

-- Get an activity record that contains a name.
TheActRecord:= ActivityManager.ValueOfActivityAtIterator;

B-7

-- O(i) procedure to count the "arrows" for this activity.
-- Note: if the ICOM mgr is empty, this procedure returns all
-- zeroes and does not examine the activity name.
ICOMelationManager.ValueOfICOMCounts

(TheActRecord.Name, Inputs, Controls, Outputs, Mechanisms);

-- Now must add the facts. (a better block of code is possible here)
-- Place the record into a fact string at specific positions.
-- Initialize the fact string to all blanks first.
-- All string assignments are modeled as 0().
-- Add fact for number of inputs.

AFact:= Blank-Fact;
-- The padding of blanks in the first field is for aesthetic
-- purposes only.

AFact(i..24) := "icom-activity-inputs ";

AFact(25) : 1;
AFact(26..50) := TheActRecord.Name;
AFact(51) :);
AFact(52..57) : PaddedString(integer'image(Inputs), 6);
-- Store this fact in the fact buffer. 0(1) time.
EnvironmentTypes.FactBufferPackage. AddItem

(AFact, Fact-Manager, Fact-Pointer);

-- Add fact for number of controls. 0(1) time.
AFact:= Blank-Fact;
AFact(1..24) :"icom-activity-controls ";

A-Fact(26) '

A_Fact(26..50) := TheActRecord.Name;
AFact(51) :

AFact(52..57) Padd',X String(integer'image(Controls), 6);
-- Store this fact in the fact buffer.
EnvironentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, FactPointer);

-- Add fact for number of outputs. 0(l) time.
AFact:= Blank-Fact;
AFact(1..24) "icom-activity-outputs
AFact(25)
AFact(26..50) TheActRecord.Name;
AFact(51)
AFact(52..57) := PaddedString(integerimage(Outputs), 6);
-- Store this fact in the fact buffer.

EnvironmentTypes.FactBufferPackage. AddItem
(AFact, Fact-Manager, Fact-Pointer);

-- Add fact for number of mechanisms. 0(1) time.
AFact:= Blank-Fact;
AFact(l..24) "icom-activity-mechanisms";
A_Fact(25) :-
AFact(26..50) : TheActRecord.Name;

AFact(51) =-

13-8

AFact(52..57) := PaddedString(integer'image(Mechanisms), 6);
-- Store this fact in the fact buffer.
EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

-- Advance Activity-Manger iterator to next activity record.
ActivityManager. AdvanceIteratorToNextActivity;

end loop;
end if;

end RetrieveICOMFacts;

-- DATE: 10/02/90
-- VERSION: 1.0
-- NAME: ***PROCEDURE RESTORE ICOM FACTS*** --

-- MODULE NUMBER: TBD
-- DESCRIPTION: Restores the icom facts into the ICOM Relation Manager--

-- ALGORITHM: A single while loop controls the execution with an --

-- embedded call to an O(i) procedure.
-- PASSED VARIABLES: TheFactBuffer (contains the icom facts) --

-- RETURNS: None

-- GLOBAL VARIABLES USED: None
-- GLOBAL VARIABLES CHANGED: None

-- FILES READ: None
-- FILES WRITTEN: None

-- HARDWARE INPUT: None
-- HARDWARE OUTPUT: None
-- MODULES CALLED: None
-- CALLING MODULES: TBD

-- ORDER-OF: O(i * i) where i is the number of facts in the fact --

-- buffer which should be the same as the no. of ICOM tuples; the --

-- of ICOM tuples is represented by an 'i'--
-- Note that all string slice operations are modeled as 0() time. --

-- AUTHOR(S): Terry Kitchen
-- HISTORY: None (Initial Implementation)

procedure RestoreICOMFacts
(TheFactBuffer : in

EnvironmentTypes.FactBufferPackage.ManagerType) is

-- Local Declarations --

Fact-Pointer: EnvironmentTypes.FactBufferPackage. IteratorType;
A-Fact: EnvironmentTypes.FactStringType;

First-Char: natural:= 0;
Char-Position: natural:= 0;

TempPos: natural:= 0;

-- ICOM Related Declarations --

ICOMRelationRecord: ICOMRelationClass. ICOMRelationRecordType;

B-9

ICOMRelationPointer: ICOMRelationManager.ICOMRelationPointerType;
NullICOMRecord: ICOMRelationClass.ICOMRelationRecordType;

begin
-- Check for empty buffer of facts. If empty, do nothing.
if EnvironmentTypes.FactBufferPackage.IsEmpty(TheFactBuffer) then

return;
end if;

-- Initialize iterator to first tuple/fact.
EnvironmentTypes.FactBufferPackage.InitializeIterator

(Fact-Pointer, TheFactBuffer);

-- Engage loop to extract the icom-tuple facts from a buffer
-- one at a time. This loop is O(i) time.
While not EnvironmentTypes.FactBufferPackage.IsDone(FactPointer) loop

-- Get a record.
AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem

(Fact-Pointer);
-- Since we put the information in the string, we know the
-- exact columns where information should be.
-- All string assignments are modeled as 0(i);
-- Insure the fields are all blanks.

ICONRelationRecord:= NullICOMRecord;

-- Retrieve the fields from the fact string.
ICOMRelationRecord.Activity:= AFact(12..36);
ICOMRelationRecord.DataElement:= AFact(38..62);
ICOMRelationRecord.Relationship:= AFact(64);
ICOMRelationRecord.PairId:= integer'value(AFact(66..71));

-- Load this fact back into the ICOM manager. O(i) procedure call.
ICOMRelationManager. CreateICOMRelationTuple

(ICOMRelationRecord, ICOMRelationPointer);

-- Advance pointer to next ICOM tuple in manager.
EnvironmentTypes.FactBufferPackage.GetNext(FactPointer);

end loop;
end RestoreICOMFacts;

-- DATE: 10/27/90
-- VERSION: 1.0
-- NAME: ***PROCEDURE RETRIEVE PROJECT FACTS*** --

-- MODULE NUMBER: TBD
-- DESCRIPTION:
-- When the flag TypeOfFactsFlag is set to true,it means the --

-- client procedure wants all the facts that are necessary for --

-- the .esm file. If the flag is false, then the facts for --

B-I0

the expert system are returned. Facts of the same type have --

the same format no matter where they are destined. In this --

case, the project name is but a single fact. Future --

-- modifications to SAtool II could include more information in --

-- the Project-Manager however, thus this procedure is of use. --

-- icom tuple facts: (retrieved when creating a .esm file or when --

-- performing check syntax) --

-- 1) a predefined attribute name (project-name) --

-- 2) the project name (if the name is null, the word 'null' is --

-- placed in the field.
-- ALGORITHM: All simple 0(I) statemnts and 2 0(1) procedure calls. --

-- PASSED VARIABLES: TypeFactsFlag, Fact-Manager --

-- RETURNS: None

-- GLOBAL VARIABLES USED: None
-- GLOBAL VARIABLES CHANGED: None

-- FILES READ: None
-- FILES WRITTEN: None

-- HARDWARE INPUT: None

-- HARDWARE OUTPUT: None

-- MODULES CALLED: None
-- CALLING MODULES: TBD
-- ORDER-OF: 0(0)

-- AUTHOR(S): Terry Kitchen

-- HISTORY: None (Initial Implementation)

procedure RetrieveProjectFacts
(TypeFactsFlag : in boolean;
Fact-Manager in out Environment-Types.

FactBufferPackage.ManagerType) is

-- Local Declarations --

Fact-Pointer: EnvironmentTypes.Fact.BufferPackage. IteratorType;
A-Fact: EnvironmentTypes.FactStringType;
Blank-Fact: Environ.ntTypes.FactStringType:= (others => '

-- Project Related Declarations --
Project-Name: EnvironmentTypes.ProjectNameType;

begin
-- Clear the passed in fact-manager.

EnvironmentTypes.FactBufferPackage.Clear(Factlianager);

-- For the Project Manager, the same information is returned
-- regardless of the flag setting. The parameters are still used
-- however in case future modifications will need them.
ProjectName:= ProjectManager.ValueOfProjectName;

-- Check for blank name. If it's blank, give it the name 'null'.
-- The then part should never execute i SAtool II forces the user
-- to always assign a name to a project.

if Project-Name = EnvironmentTypes.NullProjectName then

B-I

ProjectName:= "null
end it;

-- Create the fact. All 0(1) time.
AFact:= BlankFact;
AFact(l..12):= "project-name";
AFact(13):= 1 ';
AFact(14..38):= Project-Name;

-- Store this fact in the fact buffer. Just one fact. No loop.
-- 0() time.
EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer):

end RetrieveProjectFacts;

-- DATE: 10/27/90

-- VERSION: 1.0
-- NAME: ***PROCEDURE RESTORE PROJECT FACTS*** --

-- MODULE NUMBER: TBD

-- DESCRIPTION:
-- ALGORITHM: All 0(1) statements and procedure calls. --

-- PASSED VARIABLES: TheFactBuffer (contains the project fact) --

-- RETURNS: None
-- GLOBAL VARIABLES USED: None
-- GLOBAL VARIABLES CHANGED: None
-- FILES READ. None
-- FILES WRITTEN: None

-- HARDWARE I.IPUT: None
-- HARDWARE OUTPUT: None

-- MODULES CALLED: lone
-- CALLING MODULES: TBD
-- ORDER-OF: 0(1)
-- Note that all string slice operations are modeled as 0(1) time. --

-- AUTHOR(S): Terry Kitchen
-- HISTORY: None (Initial Implementation)

procedure RestoreProjectFacts
(TheFactBuffer : in
EnvironmentTypes.FactBufferPackage.ManagerType) is

-- Local Declarations --
Fact-Pointer: EnvironmentTypes.FactBufferPackage. IteratorType;
A-Fact: EnvironmentTypes.FactStringType;
First-Char: natural:= 0;

-- Project Related Declarations --
Project-Name: EnviromentTypes.ProjectNameType;

begin
-- Check for empty buffer of facts. If empty, do nothing.

13-12

if EnvironmentTypes.FactBufferPackage.IsEmpty(TheFactBuffer) then

return;
end if;

-- Initialize iteratcr to first tuple/fact.

EnvironmentTypes.FactBufferPackage.InitializeIterator

(Fact-Pointer, TheFactBuffer);

-- Get a record. There is only one fact! 0(1) call.
AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem

(Fact-Pointer);

-- We know that the project name starts in column 14 at this point.
FirstChar:= 14;

-- Since there is only one field of data, no looping is necessary.
-- The remaining characters after the project name are blank.
ProjectName:= AFact(First_Char..38);

-- Need to check if the project name was null.
-- If the name is null, we do nothing, since the Project-Manager
-- initializes the project name to all blanks anyway.
if Project_Name(l..4) = "null" then

null;
else

-- Load the project name back into the manager.
ProjectManager.SetProjectName(ProjectName);

end if;

end RestoreProjectFacts;

-- DATE: 2/19/91
-- VERSION: 1.0
-- NAME: ***PROCEDURE RETRIEVE ACTIVITY FACTS***
-- MODULE NUMBER: TBD
-- DESCRIPTION:

When the flag TypeOfFactsFlag is set to true,it means the --

-- client procedure wants all the facts that are necessary for --

-- the .esm file. If the flag is false, then the facts for --

-- the expert system are returned.
-- Note that this procedure only handles a subset of the activity --

-- facts: the activity name, number, and description. The remaining --

-- facts must still. be retrieved!
-- Activity facts format for .esm file:
-- Note that if an activity name exists, then the other fields --

will be filled with a string called ''null'' if they are empty. --

-- (act-name "activity name'')

-- (act-numb ''activity name'' ''activity number") --

-- (act-desc ''activity name'' ''wordi'' ''word2'' etc.) --

B-13

-- The last fact is repeated for each line of the description. --

-- Activity facts format for CLIPS:
-- Note that CLIPS does NOT need to check the description. Therefore,--
-- just pass it a fact with "null" or "not-null" to save space in --

-- the working memory.

-- (act-name "activity name")
-- (act-numb "activity name" "activity number'') --

-- (act-desc "activity name" "not-null") --

-- As with the facts for the .esm file, if any of the fields are empty--
-- the word "null" is inserted instead.

-- ALGORITHM: One outer loop that iterates through the activities --

-- contains simple if then else constructs and one inner loop. These --

-- mechanisms contain s , al 0(1) function calls to the activity --

-- manager to retrieve information.
-- PASSED VARIABLES. TypeFactsFlag, Fact-Manager --

-- RETURNS: None
-- GLOBAL VARIABLES USED: None

-- GLOBAL VARIABLES CHANGED: None

-- FILES READ: None
-- FILES WRITTEN: None

-- HARDWARE INPUT: None
-- HARDWARE OUTPUT: None

-- MODULES CALLED: Several Activity Manager procedures and functions, --

-- plus some TextBufferPackage operations, --

-- CALLING MODULES: EssentialIO.SaveProject, ClipsWorkingMemory_ --

-- Interface.AssertAllFacts

-- ORDER-OF: O(a* max(x,z) where a = # activities, and x is --

-- the number of lines in a description, and z = # of activ children. --

-- Note that all slice operations are modeled as 0(1) time. --

-- AUTHOR(S): Terry Kitchen and Min-fuh Shyong --

-- HISTORY. None (Initial Implementation)
..

procedure RetrieveActivityFacts
(TypeFactsFlag : in boolean;
Fact-Manager : in out EnvironmentTypes.

FactBufferPackage.ManagerType) is

-- Local Declarations --

Fact-Pointer: EnvironmentTypes.FactBufferPackage. IteratorType;
A-Fact: EnvironmentTypes.FactStringType;
BlankFact. Environment-Types.FactStringType:= (others => '

-- Activity Related Declarations

Act-Name : ActivityClass.ActivltyName.Type;
TheActRecord : ActivityClass.Activity.Record-Type;

The-Iterator : EnvironmentTypes.TextBufferPackage. IteratorType;
ChildIterator : EnvironmentTypes.DataBufferPackage. IteratorType,

13-14

ADescriptionLine EnvironentTypes.DDTextType;
A-Child EnvironmentTypes.DDF eldType;

-- **** Added new facts 120390 ***--

Reference-Iterator EnvironmentTypes.TextBufferPackage.IteratorType;
AReferenceLine EnvironmentTypes.DDTextType;

-- **** Added new Vars fcr version changes ***

VersionIterator : EnvironmentTypes.TextBufferPackage. IteratorType;
Version-Line : EnvironmentTypes.DDTextType;

begin
-- Clear the passed in fact-manager. 0(l) time.
EnvironmentTypes.FactBufferPackage.Clear(FactManager);

-- Set pointer to beginninS of manager. 0(i) time.
ActivityManager.ResetActivityIterator;

-- Engage loop to extrac. the facts associated with an activity. The
-- facts extracted will have the format discussed above. If there are
-- no activities, this loop won't execute and an empty buffer is the
-- result.
-- This loop runs a times where a is the number of activities. At this
-- time there is only one inner loop of O(x) time. Thus, the time
-- complexity is O(a * x).

while not ActivityManager.ActivityIteratorDone loop
-- Get a record. 0(i) time.

TheActRecord:= Activity-Manager.
ValueOfActivityAtIterator;

-- Regardless of the TypeFactsFlag setting, the activity name is
-- always added to the fact buffer.

-- Place the activity name into a fact string at specific positions.
-- Initialize the fact string to all blanks first.
-- All string assignments are modeled as 0(1).
-- ****Create Activity Name Fact****

AFact:= Blank-Fact;

A_Fact(l..8) "act-name";

AFact(9) '

AFact(i0..34) The-ActRecord.Name;

-- Store this fact in the fact buffer. 0() time.
EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

-- ****Create Activity Number Fact****

B3-15

AFact:= Blank-Fact;

AFact(..8) "act-numb";

AFact(9) ');
AFact(iO..34) TheActRecord.Name;

AFact(36) ' ;

-- This if then construct determines what goes into the last field.
-- If the activity number is not null then create a fact with the
-- activity number in it. Flag setting doesn't matter here.
it TheActRecord.Number /= ActivityClass.NullActivityNumber then

-- All statements modeled as 0() time.

AFact(36..55) := TheActRecord.Number;
else

-- The activity number is null, so create a null fact for
-- either the .esm file or the expert system. Again, the flag
-- setting does not matter. All 0() time.
AFact(36..39) := "null";

end if;

-- Store this fact in the fact buffer. 0(1) time.
EnvironmentTypes.FactBufferPackage.AddItem

(A_Fact, Fact-Manager, Fact-Pointer);

-- ****Create one or more Activity Description Facts****

-- If the activity description is null then only a single fact is
-- created regardless of the flag setting.
if EnvironmentTypes.TextBufferPackage.IsEmpty

(TheActRecord.Description) then

-- Create a null fact.
AFact:= Blank-Fact;
A_Fact(1..8) "act-desc";

AFact(9) :);
AFact(10..34) TheActRecord.Name;
AFact(35) I);
A_Fact(36..39):= "null";

-- Store this fact in the fact buffer. 0(1) time.
EnviromentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

-- A false flag setting means the fact is for the expert system.
-- For a description, we don't want the whole description in the
-- working memory, so just store a "not-null" string!
elsif TypeFactsFlag = False then

-- Create a fact that shows the description is not null.
AFact:= Blank-Fact;
A_Fact(1..8) "act-desc";
AFact(9) I -

AFact(1O..34) := TheActRecord.Name;

B-16

A_Fact(35) '

A_Fact(36..43):= "not-null";

-- Store this fact in the fact buffer. 0(1) time.
EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

else
-- At this point we know the flag is true which means the fact
-- is to go to the .esm file. However, there may be multiple lines
-- in the description thus a loop is required.

-- Set iterator to first line of description.
EnvironmentTypes.TextBufferPackage.InitializeIterator

(TheIterator, TheActRecord.Description);

-- Engage loop to get each line of the description and
-- make it a fact. This loop is 0(x) time where x is the
-- number of lines in the description.
while not EnvironmentTypes.TextBufferPackage. IsDone

(TheIterator) loop

-- Retrieve a single line of text. 0() time.
ADescriptionLine:= EnvironmentTypes.TextBufferPackage.

ValueOfItem(TheIterator);

-- Create a fact representing a single line of the description.
AFact:= Blank-Fact;
AFact(i..8) "act-desc";

AFact(9) =-
AFact(1O..34) := TheActRecord.Name;

AFact(35)
AFact(36..95):= ADescription-Line;

-- Store this fact in the fact buffer. 0() time.
EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

-- Advance pointer by one to next line.
EnvironmentTypes.Text-BufferPackage.GetNext(TheIterator);

end loop;

end if;

-- If the activity child list is null then only a single fact is

-- created regardless of the flag setting.

if EnvironmentTypes.DataBufferPackage. IsEmpty

(TheActRecord.Children) then

-- Create a null fact.

Ajact:= Blank-Fact;

B-17

AFact(i..13) "act-has-child";

AFact(14) :);
AFact(15..39) TheActRecord.Name;

AFact(40) : ;
A-Fact(41..44):= "null";

-- Store this fact in the fact buffer. 0(1) time.

EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

-- At this point, regardless of the flag setting, all the children

-- are put into the fact buffer. Thus, the same facts go to
-- either the .esm file or the expert system.

else

-- Set iterator to first child in list.
EnvironmentTypes.DataBufferPackage.InitializeIterator

(ChildIterator, TheActRecord.Children);

-- Engage loop to get each child and
make it a fact. This loop is O(z) time where z is the

-- number of children.
while not EnvironmentTypes.Data-BufferPackage. IsDone

(ChildIterator) loop

-- Retrieve a single line of text. 0(0) time.

AChild:= EnvironmentTypes.DataBufferPackage.
ValueOfItem(ChildIterator);

-- Create a fact representing a single line of the descr'ption.

A-Fact: = Blank-Fact;

A.Fact(l..13) "act-has-child";
AFact(14) '

AFact(1S..39) TheActRecord.Name;

AFact(40)
AFact(41..65):= A-Child;

-- Store this fact in the fact buffer. 0() time.
EnvironmentTypes.FactBufferPackage. AddItem

(A-Fact, Fact-Manager, Fact-Pointer);

-- Advance pointer by one to next line.
EnvironmentTypes.DataBufferPackage. GetNext(Chlld_Iterator);

end loop;

end if;

-- Advance pointer to next activity in manager.
-- ActivityManager.AdvanceIteratorToNextActivity;

-- Should This be at the end of Retrieve Activity??

-- ********* Added new facts from Activity Reference Type 12/08/90 ******

B-18

-- ***~***Author: Min-fuh Shyong
-- *******Create Activity reference type facts

A-.Fact Blankjact;
A-.Fact(i. .12) "act-ref-type";

A-.Fact(13) .- J
A-.Fact(14. .38) :The-.Act-.Record.Name;

A-.Fact(39) j)

if The-,Act-.Record .Reference-.Type /= Environment-Types .Null.Reference-.Type then
A-.Fact (40. .64) :=The-.Act.Record.Reference.Type;

else
A-Fact(40. .43) :"null";

end if;

Enviroxnent-.Types .Fact..Buffer-Package. Add-.Item
(A-.Fact, Fact-M.anager, Fact-Pointer);

-- (act-ref-type Name Ref erence-.Type) or
-(act-ref-type Name null)

-- **Create one or more activity reference facts --------------------

-if the activity reference is null then only a single fact is created
-regardless of the flag setting

if Environnient-.Types .Text..Buffer.package .Is-.Empty

(The_.ActRecord .Reference) then
-true it is empty

A-Fact Blank-.Fact;
A..Fact(l. .7) "act-ref";
A..Fact(8)) $;
A..Fact(9. .33) :=The-.Act..Record.Name;

A..Fact(34) _);
A-.Fact(35. .38) :"null"l;

-- (act-ref Name null)

Environment-.Types .Fact-.Buffer.Package .Add..Item
(A-.Fact, Fact-.Manager, Fact-.Pointer);

elsif Type..Facts-.Flag =false then

A-.Fact :=Blank...act;
Aj.act(l. .7) "act-ref";
A..Fact(8) := 1

A.Fact(9. .33) The-Act..Record.Name;

B-19

A-.Fact(34) '

A-.Fact(35. .42) "not-null";

-- (act-ret Name not-null)
Environment-.Types .Fact-.Buffer-Package.Add-.Item

CL-Fact, Fact-M.anager, Fact-.Pointer);

else
-flag is true the file to .esm file, may be multiple line of
-reference so need a loop to get it

Environment-.Types .Text.Buffer-Package. Initialize-Iterator
(Ref erence..Iterator, The-.Act.Record.Reference);

-- Engage a loop to get each line of the reference and make it a fact

while not Environment-Types .Text-.Buffer.Package. Is-.Done
(Reference..terator) loop

A..Reference-Line
Environment-.Types .Text-uffer.Package.
ValueOf_.Item(Reference..Iterator);

A-Fact :=Blanik-Fact;
A..Fact(l. .7) "act-ref";
A..Fact(8) := 1

A-.Fact(9. .33) The-.Act-.Record.Name;
A_.Fact(34) := 1
A..Fact(35. .94) :=A-Reference.Line;

Environment-Types .Fact..Buffer-Package.Add-Item
(A..Fact, Fact-.Manager, Fact-Pointer);

Environ~ment-Types .Text.Buffer-Package .Get..Yext(Reference_.Iterator);

end loop;
end if; -- (act-ref Name Reference-Linel)

-- (act-ref Name Ref erence-Line2)

-- *******Create Activity Version facts************

A-.Fact Blank-.Fact;
A-Fact(1. .11) "act-version";

A..Fact(12) .

A_.Fact(13. .37) The..ActRecord.Name;

A-.Fact(38) . - ;

if The..Act-.Record.Version /= Activity-Class .Null-Activity.Version-number then
A-Fact(39. .48) :=The..Act-.Record.Version;

B-20

else
AFact(39..42) := "null";

end if;

EnvironmentTypes.FactBufferPackage.AddItem
(AFact, Fact-Manager, Fact-Pointer);

-- (act-version Name Activity-Version) or
-- (act-version Name null)

-- *** Create one or more activity Version-Changes facts---------------------

-- if the activity version changes is null thien only a single
-- fact is created regardless of the flag setting

if EnvironmentTypes.TextBuffer-package.IsEmpty
(TheActRecord.VersionChanges) then

-- true it is empty

A-Fact Blank-Fact;
4_Fact(1..11) "act-ver-chg";
AFact(12) '

AFact(13..37) TheActRecord.Name;
AFact(38) : -
AFact(39..42) "null";

EnvironmentTypes.FactBufferPackage.AddItem
(AFact, Fact-Manager, Fact-Pointer);

elsif TypeFactsFlag = false then

A-Fact := Blank-Fact;
AFact(I..11) "act-ver-chg";
AFact(12) := I;
AFact(13..37) TheActRecord.Name;
AFact(38) := 1;
AFact(39..46) "not-null";

EnvironmentTypes.FactBufferPackage.AddItem
(AFact, Fact-Manager, Fact-Pointer);

else -- version not empty show the version changes to .esm --

EnvironmentTypes.TextBufferPackage. InitializeIterator
(VersionIterator, TheActecord.VersionChanges);

-- Engage a loop to get each version of changes and make it a fact

while not EnvironmentTypes.TextBufferPackage. IsDone

B-21

(Version.Iterator) loop

Version-.Line :
Envirorment-.Types .Text-.BufferPackage .Value..f-tem(Version-Iterator);

A-.Fact :=Blank-.Fact;
A...act(1. 11) "act-ver-chg";
A-.Fact(12) := 1
A-.Fact(13. .37) The-Act..Record.Name;
A-Fact(38) := 1
A-.Fact(39. .98) Version-Line;

-- (act-ver-chg Niame null)
-(act-ver-chg Niame Version-changes)

Environment-Types .Fact-Buffer-Package .Add-Item
(A..Fact, Fact-Manager, Fact-Pointer);

Environent-.Types .Text-Buffer-Package.Get-Next (Version-Iterator).

end loop;
end if;

-****Create Activity Date Fact **** ---------------------
A-Fact:= Blank-.Fact;
A-Fact(1. .8) "act-date";
A-Fact(9)
A-.Fact(1O. .34) The-.Act-Record.Nane;
A-Fact(35) j?

if The..Act-.Record.Date /= Environment-Types.Null-Date then
A-Fact(36. .43) :=The-Act-Record.Date;

else

A.Yact(36. .39) :="null";
end if;

-- Store this date fact in the fact buffer. O(W time.
Environnent-.Types .Fact-.BufferPackage.AddItem

(A-Fact, Fact-.Manager, Fact-.Pointer);

-- (act-date Niame mm/dd/yy)
-(act-date Name null)

-****Create Activity Author Fact****..................--

A..Fact(1. .10) :="act-author";

B-22

AFact(11) := 1 1;
AFact(12..36) TheActRecord.Name;

AFact(37) : ;

-- This if then construct determines what goes into the last field.
-- If the activity author is not null then create a fact with the
-- activity author in it. Flag setting doesn't matter here.

if TheActRecord.Author /= EnvironmentTypes.NullAuthorName then
-- All statements modeled as 0(1) time.
AFact(38..62) := TheActRecord.Author;

else
-- The activity author is null, so create a null fact for

-- either the .esm file or the expert system. Again, the flag
-- setting does not matter. All 0(1) time.
AFact(38..41) := "null";

end if;

-- Store this fact in the fact buffer. 0(1) time.
EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

-- Advance pointer to next activity in manager.
ActivityManager.AdvanceIteratorToNextActivity;

end loop;

-- Outer loop for RetrieveActivityFacts; *

end RetrieveActivityFacts;

-- DATE: 2/19/91
-- VERSION: 1.0

-- NAME: ***PROCEDURE RESTORE ACTIVITY FACTS*** --

-- MODULE NUMBER: TBD
-- DESCRIPTION: This procedure accepts a buffer of activity facts and --

-- restores that information into the activity manager. Of special --

-- note is that the procedure assumes the facts are in the same order --

-- in which they were stored.
-- ALGORITHM: A single while loop controls the execution with an --

-- embedded call to an O(i) procedure.
-- PASSED VARIABLES: TheFactBuffer (contains the facts) --

-- RETURNS: None
GLOBAL VARIABLES USED: None

-- GLOBAL VARIABLES CHANGED: None

-- FILES READ: None
-- FILES WRITTEN: None
-- HARDWARE INPUT: None

-- HARDWARE OUTPUT: None

B-23

-- MODUL.S CALLED: None

-- CALLING MODULES: EssentialIO.Restore_Project -

-- ORDER-OF: order of is O(a * max (x, z * (a * z))) where a is the --

-- number of activities, x is the number of lines in a description --

-- and z is the number of children that an activity has. Note that --

-- this order of may change when more of the activity manager facts --

-- are restored.

-- Note that all string slice operations are modeled as 0(1) time. --

-- AUTHOR(S): Terry Kitchen and Min-fuh Shyong --

-- HISTORY: None (Initial Implementation)

procedure RestoreActivityFacts
(TheFactBuffer : in
EnvironmentTypes.FactBufferPackage.ManagerType) is

-- Local Declarations --

Fact-Pointer: EnvironmentTypes.FactBufferPackage. IteratorType;

A-Fact: EnvironmentTypes.FactStringType;
First-Char: natural:= 0;
Char-Position: natural:= 0;
TempPos: natural:= 0;
MoreDescriptionsFlag: boolean;

-- Activity Related Declarations --

Activity-Record: ActivityClass.ActivityRecordType;
Activity-Pointer: Activity.Manager.Activity.PointerType;
NullActivityRecord: ActivityClass.ActivityRecordType;

TheIterator: EnvironmentTypes.TextBufferPackage. IteratorType;

ADescriptionLine: EnvironmentTypes.DDTextType;
A-Child: EnvironmentTypes.DDFieldType;
AReferenceLine : EnvironmentTypes.DDTextType;
Version-Line : EnvironmentTypes.DDTextType;

Found-Flag: boolean:= False;
Result-Flag: boolean;

-- Exception --

-- This exception is declared here because the Essential 10 package does
-- not check to see the facts are in any specific order.

InvalidFactSequenceForActivity: exception;
ActivityHierarchyErrorDuringRestore: exception;

begin
-- Check for empty buffer of facts. If empty, do nothing.

if EnvironmentTypes.FactBufferPackage.IsEmpty(TheFactBuffer) then
return;

B-24

end if;

-- Initialize iterator to first fact.
EnvironmentTypes.FactBufferPackage.InitializeIterator

(Fact-Pointer, TheFactBuffer);

-- Engage loop to extract the activity facts from a buffer

-- one at a time. This loop will execute a times -- once for
-- each activity. Note that there are many facts associated with

-- a single activity. This loop runs a times. The loop has one
-- inner loop of order x and one procedure call of (a * z). Thus,
-- order of is O(a * max (x, z*(a * z)))

While not EnvironimentTypes.FactBufferPackage.IsDone(FactPointer) loop

-- Get a record.
AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem

(Fact-Pointer);

-- Since we put the information in the string, we know the
-- exact columns where information should be.
-- All string assignments are modeled as 0(1);

-- Insure the fields are all blanks.
ActivityRecord:= NullActivityRecord;

-- The first fact should be the name.

if AFact(l..8) /= "act-name" then
TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: act-name "n);

raise InvalidFactSequenceForActivity;
end if;

-- The activity name must be in columns 10 through 34.
ActivityRecord.Name:= AFact(1O..34);

-- Check to see if activity already exists. O(a) call.
ActivityManager.ActivityExists(ActivityRecord. Name,

Activity-Pointer, Found-Flag);
if Found-Flag False then

-- Do O(a * z) procedure call to create an activity.
ActivityManager. CreateActivity

(ActivityRecord.Name, Activity-Pointer);
end if;

-- Advance pointer to next fact in manager. 0().
EnvironmentTypes.FactBufferPackage.GetNext(FactPointer);
-- Get a fact. 0(1) time.

AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem
(Fact-Pointer);

B-25

-- This fact should be the activity number.

if AFact(i..8) /= "act-numb" then
TextIO.PtcLine(AFact);

TextIO.PutLine("I am Exp: act-numb ");
raise InvalidFactSequenceForActivity;

end if;

-- Columns i0 through 34 must be the same activity name.
if AFact(iO..34) /= ActivityRecord.Name then

TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: act-numb.Name ");
raise InvalidFactSequenceForActivity;

end if;

-- Columns 36 through 55 hold the activity number if it is
-- not null.
if AFact(36..39) = "null" then

-- Do nothing, there was no activity number.

null;
else

-- Get the number.
ActivityRecord.Number:= AFact(36..55);
-- Do 0() procedure call to update the activity in the activity
-- manager.
ActivityManager.SetActivityNumber

(ActivityPointer, ActivityRecord.Number);
end if;

-- Advance pointer to next fact in manager.

EnvironmentTypes.FactBufferPackage.GetNext(FactPointer);
-- If the fact buffer is empty at this point there is an error
-- in the format.
if EnvironmentTypes.FactBufferPackage. IsDone(FactPointer) then

Text_IO.PutLine(AFact);
TextIO.PutLine("I am Exp: act-name IsDone ");
raise InvalidFactSequenceForActivity;

end if;

-- Get a fact.

AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem
(Fact-Pointer);

-- The series of fact(s) should be the activity description.
-- There is at least one act-desc fact and possible more.
if AFact(l..8) /= "act-desc" then

TextIO.PutLine(AFact);
Text_IO.PutLine("I am Exp: act-desc ");
raise InvalidFactSequenceForActivity;

end if;

-- Columns 10 through 34 must be the same activity name.

B-26

if AFact(1O..34) /= ActivityRecord.Name then
TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: act-desc.Name ");
raise InvalidFactSequenceForActivity;

end if;

-- If the description is null then we are done with this attribute.
-- Need only to advance the pointer by one for the outer loop.
if A.Fact(36..39) = "null" then

There is no description for the activity, so just advance
-- the fact pointer.
-- Advance pointer to next fact in manager, 0(1) time.
EnvironmentTypes.FactBufferPackage. GetNext(Fact.Pointer);

else
-- There must be one or more lines in the description.
-- This loop will run x times where x is the number of lines in the
-- description,
while AFact(1..8) = "act-desc" loop

-- I realize this check is repetitive on the first iteration.
-- Columns 10 through 34 must be the same activity name.
-- 0(1) time complexity.
if AFact(10..34) /= Activity-Record.Name then

TextIO.PutLine(AFact);
Text-IO.PutLine("I am Exp: act-desc.Name else ");

raise InvalidFact-SequenceForActivity;
end if;

-- Pull the description from the fact.

ADescriptionLine:= A-Fact(36..95);

-- Add the description to the description part of the

-- activity record. 0(1) time.
EnvironmentType s.TextBufferPackage. Add-Item

(ADescription-Line,ActivityRecord.Description,TheIterator);

-- Advance pointer to next fact in manager.

EnvironmentTypes.FactBufferPackage.GetNxt(Fact-Pointer);

-- If it is not empty get the next fact. 0(1) time.

if not EnvironmentTypes.FactBufferPackage.IsDone

(Fact-Pointer) then
AFact:= EnvironmentTypes.FactBufferPackage.ValueOf-Item

(FactPointer);

else
If this is the last fact of the last activity exit the

-- loop.
exit;

6nd if;
end lop:

13-27

-- There were one or more lines in the description so now must
-- place them with the activity in the activity manager. 0(1).
ActivityManager.SetActivityDescription

(ActivityPointer, Activity.Record.Description);

end if;

-- If the fact buffer is empty at this point there is an error
-- in the format. 0(1) time. I know this because RetrieveActivity_
-- Facts will at least put a null entry for no children.

if EnvironmentTypes.FactBufferPackage. IsDone(Fact_Pointer) then
TextIO.PutLine(AFact);
TextIO.PutLine("I am Exception: act-has-child IsDone ");

raise InvalidFactSequenceForActivity;

end if;

-- Get a fact.

AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem
(FactPointer);

-- The series of fact(s) should be the activity description.
-- There is at least one act-desc fact and possible more.
if AFact(l..13) /= "act-has-child" then

TextIO.PutLine("I am Exp:act-has-child °');
raise InvalidFactSequenceForActivity;

end if;

-- Columns 15 through 39 must be the same activity name.
if AFact(I5..39) /= ActivityRecord.Name then
TextIO.PutLine("I am Exp: act-has-child.Name ");

raise InvalidFactSequenceForActivity;
end if;

-- If the child list is null then we are done with this attribute.
-- Need only to advance the pointer by one for the outer loop.

if A_.Fact(41. .44) = "null" then
-- There is no child list for the activity, so just advance
-- the fact pointer.

-- Advance pointer to next fact in manager. 0(0) time.
Environent_.Types.FactBufferPackage.GetNext(FactPointer);

else
-- There must be one or more children.

-- This loop will run z times where z is the number of children.
while AFact(1..13) = "act-has-child" loop

-- I realize this check is repetitive on the first iteration.

B-28

-- Columns 15 through 39 must be the same activity name.
-- 0() time complexity.

if AFact(i5..39) /= ActivityRecord.Name then
TextIO.PutLine("I am Exp: act-has-child whild ");
raise InvalidFactSequenceForActivity;

end if;

-- Pull a child from the fact.
AChild:= AFact(41..65);

-- In order to add a child to a parent, the Activity Manager
-- requires that the child already exist as an activity.
-- Thus, must create the activity first if needed.

-- Check to see if activity already exists. O(a) call.
ActivityManager.ActivityExists(AChild,

Activity-Pointer, Found-Flag);
if Found-Flag False then

-- Do O(a * z) procedure call to create an activity.
ActivityManager.CreateActivity

(AChild, Activity-Pointer);
end if;

-- Do another O(a * z) procedure call to add this activity
-- to the parent's child list.

ActivityManager.AddActivityChild(ActivityRecord.Name,
A-Child, Result-Flag);

-- Check results.

if Result-Flag = False then

TextIO.PutLineCYI am Exp: act-has-child flag ");
raise ActivityHierarchyErrorDuringRestore;

end if;

-- Must now call Activity Exists again in order to reset the
-- pointer for any future operations. O(a) time.
ActivityManager. Activity-Exists(ActivityRecord. Name,

Activity-Pointer, Found-Flag);

-- Advance pointer to next fact in manager.
EnvironmentTypes.FactBufferPackage.GetNext(FactPointer);

-- If it is not empty get the next fact. 0(l) time.
if not EnvironmentTypes.FactBufferPackage. IsDone

(Fact-Pointer) then

AFact:= EnvironmentTypes.FactBufferPackage.ValueOf-item

(Fact-Pointer);

else
-- If this is the last fact of the last activity exit the

-- loop.
exit;

end if;

13-29

end loop;

end if;

if EnvironmeitTypes.FactBufferPackage.Is-done(FactPointer) then
TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: act-ref-type - Is-done ");
raise InvalidFactSequenceForActivity;

end if;

Advance pointer to next fact in manager. 0(1).
-- EnvironmntTypes.FactBufferPackage.GetNext(FactPointer);
-- this viil cause the fact get next act-ref fact ealier than

-- expected!

-- Get a fact. 0(1) time.

AFact:= EnvironmentTypes.FactBuffer-Package.ValueOfItem
(Fact-Pointer);

if AFact(1..12) /= "act-ref-type" then
TextIO.PutLine(AFact);

TextIO.PutLine("I am Exp:act-ref-type ");
raise InvalidFactSequenceForActivity;

end if;

-- Columns 14 through 38 must be the same activity name.

if A-Fact(14..38) /= ActivityRecord.Name then
TextIO.PutLine("I am Exp: act-ref-type.name ");

raise InvalidFactSequenceForActivity;
end if;

-- Columns 40 through 64 hold the activity Reference Type if it is
-- not null.

if AFact(40..43) = "null" then
-- Do nothing, there was no activity Reference Type.

null;

else
-- Get the Reference type

ActivityRecord.ReferenceType:= AFact(40..64);
-- Do 0(0) procedure call to update the activity in the activity
-- manager.

ActivityManager. SetActivityReferenceType

(Activity-Pointer, ActivityRecord.ReferenceType);
end if;

B-30

-- **#*********** Restore Activity Reference Facts ***************

-- 13 Feb 91

-- Advance pointer to next fact in manager.
EnvironimentTypes.FactBufferPackage.GetNext(Fact_Pointer);

-- If the fact buffer is empty at this point there is an error
-- in the format.

if EnvironmentTypes.FactBufferPackage.IsDone(FactPointer) then
TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: act-ref Is-Done ");
raise InvalidFactSequenceForActivity;

end if;

-- Get a fact.

AFact:= EnvironmentTypes.Fact-BufferPackage.ValueOfItem
(Fact-Pointer);

-- The series of fact(s) should be the activity Reference.
-- There is at least one act-ref fact and possible more.

if AFact(1..7) /= "act-ref" then
TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: act-ref ");
raise InvalidFactSequenceForActivity;

end if;

-- Columns 9 through 33 must be the same activity name.
if AFact(9..33) /= ActivityRecord.Name then

TextIO.PutLine("I am Exp: act-ref.Name 1 ");
raise InvalidFactSequenceForActivity;

end if;

-- If the Reference is null then we are done with this attribute.,
-- Need only to advance the pointer by one for the outer loop.

if AFact(35..38) = "null" then
-- There is no reference for the activity, so just advance

-- the fact pointer.
-- Advance pointer to next fact in manager. 0(1) time.
EnvironmentTypes.FactBufferPackage. GetNext(FactPointer);

else

-- There must be one or more lines in the reference.
-- This loop will run x times where x is the number of lines in the

B-31

-- reference.
while AFact(l..7) = "act-ref" loop

-- I realize this check is repetitive on the first iteration.
-- Columns 9 through 33 must be the same activity name.
-- 0(1) time complexity.

if AFact(9..33) /= ActivityRecord.Name then
TextIO.PutLine("I am Exp: act-ref.Name 2 ");
raise InvalidFactSequenceForActivity;

end if;

-- Pull the reference from the fact.
AReferenceLine:= Ajact(35..94);

-- Add the reference to the reference part of the
-- activity record. 0() time.
EnvironmentTypes.TextBufferPackage.AddItem

(AReferenceLine,ActivityRecord.Reference,TheIterator);

-- Advance pointer to next fact in manager.

EnvironmentTypes.FactBufferPackage.GetNext(Fact_Pointer);

-- If it is not empty get the next fact. 0(l) time.
if not EnvironmentTypes.FactBufferPackage. IsDone

(Fact-Pointer) then

AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem
(Fact-Pointer);

else
-- If this is the last fact of the last activity exit the
-- loop.

-- Text-O.PutLine("I am Exp: act-ref else ");
-- raise InvalidFactSequenceForActivity;

exit;
end if;

end loop;

-- There were one or more lines in the description so now must
-- place them with the activity in the activity manager. 0(0).

ActivityManager.SetActivityReference
(Activity-Pointer, ActivityRecord.Reference);

end if;

if EnvironmentTypes.FactBufferPackage. Is-done(FactPointer) then
TextIO.PutLine("I am Exp: act-version Isdone ");
raise InvalidFactSequenceForActivity;
end if;

B-32

-- Advance pointer to next fact in manager. 0(1).
--EnvironmentTypes.FactBufferPackage.GetNext(FactPointer);

-- Get a fact. 0(1) time.
AFact:= EnvironmentTypes.FactButferPackage.ValueOfItem

(Fact-Pointer);

-- This fact should be the activity Version.

if AFact(l..11) /= "act-version" then
TextIO.PutLine("I am Exp: act-version ");

raise InvalidFactSequenceForActivity;
end if;

-- Columns 13 through 37 must be the same activity name.
if AjFact(13..37) /= ActivityRecord.Name then

TextIO.PutLine('I cm Exp: act-version.Name ");
raise InvalidFact_ equenceForActivity;

end if;

-- Columns 39 through 48 hold the activity version if it is
-- not null.

if AFact(39..42) = "null" then
-- Do nothing, there was no activity version.
null;

else
-- Get the version.

ActivityRecord.Version:= AFact(39..48);
-- Do 0() procedure call to update the activity in the activity
-- manager.

ActivityManager.SetActivityVersion
(ActivityPointer, ActivityRecord.Version);

end if;

-- *** get Activity Version Changes Facts ***-------------------------

-- Advance pointer to next fact in manager.

EnvironmentTypes.FactBufferPackage.GetNext(FactPointer);
-- If the fact buffer is empty at this point there is an error
-- in the format.

if EnvironmentTypes.FactBufferPackage. IsDone(FactPointer) then
TextIO.PutLine("I am Exp: act-ver-chg Is-Done ");

raise InvalidFactSequenceForActivity;
end if;

13-33

-- Get a fact.

AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem
(Fact-Pointer);

-- The series of fact(s) should be the activity Version Changes.
-- There is at least one act-ver-chg fact and possible more.
if AFact(1..11) /= "act-ver-chg" then

TextIO.PutLine("I am Exp: act-ver-chg ");
raise InvalidFactSequenceForActivity;

end if;

-- Columns 13 through 37 must be the same activity version name.
if AFact(13..37) /= ActivityRecord.Name then

TextIO.PutLine("I am Exp: act-ver-ch.Name ");
raise InvalidFactSequenceForActivity;

end if;

-- If the version change is null then we are done with this attribute.
Need only to advance the pointer by one for the outer loop.

if AFact(39..42) = "null" then
-- There is no version change for the activity, so just advance
-- the fact pointer.

-- Advance pointer to next fact in manager. 0(1) time.

EnvironmentTypes.FactBufferPackage.GetNext(FactPointer);

else
-- There must be one or more lines in the version changes.
-- This loop will run x times where x is the number of times in the
-- version change.

while AFact(1..11) = "act-ver-chg" loop
-- I realize this check is repetitive on the first iteration.
-- Columns 13 through 37 must be the same activity name.
-- 0(I) time complexity.

if AFact(13..37) /= ActivityRecord.Name then
TextIO.PutLine("I am Exp: act-ver-chg.Name in loop ");
raise InvalidFactSequenceForActivity;

end if;

-- Pull the description from the fact.
VersionLine:= AFact(39..98);

-- Add the version change to the Version Changes part of the
-- activity record. 0(1) time.

B-34

EnvironmentTypes.TextBufferPackage.AddItem

(VersionLine, ActivityRecord.VersionChanges, TheIterator);

-- Advance pointer to next fact in manager.

EnvironmentTypes.FactBufferPackage.GetNext(FactPointer);

-- If it is not empty get the next fact. 0(1) time.
if not EnvironmentTypes.FactBufferPackage. IsDone

(Fact-Pointer) then
AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem

(Fact-Pointer);
else

If this is the last fact of the last activity exit the
-- loop.
--TextIO.PutLine("I am Exp: act-ver-chg else ");
-- raise InvalidFactSequenceForActivity;

exit;
end if;

end loop;

-- There were one or more lines in the version changes so now must
-- place them with the activity in the activity manager. 0(l).
ActivityManager.SetActivityVersionComments

(Activity-Pointer, ActivityRecord.VersionChanges);

end if;

--*** get Activity Date Facts *** ----------------

if EnvironmentTypes.FactBufferPackage.Is-done(FactPointer) then
TextIO.PutLine("I am Exp: act-data Isdone ");

raise InvalidFactSequenceForActivity; -- raised
end if;

-- 2/18/.2340 GetNext(Fact_Pointer)
-- This will get author ealier

-- Advance pointer to next fact in manager. 0(1).
-- EnvironmentTypes.FactBufferPackage. GetNext(FactPointer);

-- Get a fact. 0(1) time.
A..Fact:= EnvironinentTypes.FactBufferPackage.ValueOfItem

(Fact-Pointer);

-- This fact should be the activity date.

if AFact(1..8) /= "act-date" then

B-35

TextIO .PutLine(AFact);

TextIO.PutLine("I am Exp: act-date ");
raise InvalidFactSequenceForActivity;

end if;

-- Columns 10 through 34 must be the same activity name.
if AFact(10..34) /= ActivityRecord.Name then

TextI0.PutLine("I am Exp: act-data.Name ");
raise InvalidFactSequenceForActivity;

end if;

-- Columns 36 through 43 hold the activity version if it is

-- not null.
if AFact(36. .39) = "null" then

-- Do nothing, there was no activity version.

null;
else

-- Get the date.

ActivityRecord.Date:= AFact(36..43);
-- Do 0() procedure call to update the activity in the activity

-- manager.

ActivityManager. SetActivityDate
(Activity-Pointer, ActivityRecord.Date);

end if;

-- *** Get Activity Author Facts ***- -------------------------------

if EnvironmentTypes.FactBufferPackage. Is-done(FactPointer) then
TextIO.PutLine("I am Exp: act-author for Is_done ");

raise InvalidFactSequenceForActivity;

end if;

-- Advance pointer to next fact in manager. 0().,
Environme- tTypes.FactBufferPackage.GetNext(FactPointer);

-- Get a fact. 0(1) time.

AFact:= EnvironmentTypes. FactBufferPackage. ValueOfItem
(Fact-Pointer);

-- This fact should be the activity author.

if AFact(l..10) /= "act-author" then
TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: act-author ");

raise InvalidFactSequenceForActivity;

end if;

B-36

-- Columns 12 through 36 must be the same activity name.
if AFact(12..36) /= ActivityRecord.Name then

TextIO.PutLine("I am Exp: act-author.Name ");
raise InvalidFactSequenceForActivity;

end if;

-- Columns 38 through 62 hold the activity author if it is
-- not null.

if AFact(38..41) = "null" then
-- Do nothing, there was no activity author.

null;
else

-- Get the author.

ActivityRecord.Author:= AFact(38..62);
-- Do 0(1) procedure call to update the activity in the activity
-- manager.
ActivityManager.SetActivityAuthor

(Activity-Pointer, ActivityRecord.Author);
end if;

EnvironmentTypes.FactBufferPackage.GetNext(Fact.Pointer);

-- Note that the last if then construct has already advanced the fact
-- pointer to the next fact, Thus, there is no need to advance the
-- pointer here.

end loop;
end RestoreActivityFacts;

-- DATE: 2/19/91
-- VERSION: 1.0
-- NAME: *** RETRIEVE DATA ELEMENT FACTS *** --

-- MODULE NUMBER: TBD
-- DESCRIPTION:
-- When the flag TypeOfFactsFlag is set to true,it means the --

-- client procedure wants all the facts that are necessary for --

-- the .esm file. If the flag is false, then the facts for --

-- the expert system are returned. Facts of the same type have --

-- the same format no matter where they are destined. In this --

-- case, the data eleuient name is but a single fact. --

-- data element facts: (retrieved when creating a .esm file or --

-- when performing check syntax) --

-- 1) a predefined attribute name (data-element-name) --

-- 2) the data element name (if the name is null, the word 'null' is --
-- placed in the field.

B-37

-ALGORITHM: All simple 0(l) statements and 2 0(1) procedure calls. -

-- PASSED VARIABLES: Type-.Facts-Flag, Fact-.Manager -

-RETURNS: None
-GLOBAL VARIABLES USED: None
-- GLOBAL VARIABLES CHANGED: No)ne
-FILES READ: None
-FILES WRITTEN: None
-HARDWARE INPUT: None
-HARDWARE OUTPUT: None
M- ODULES CALLED: None

-CALLING MODULES: TED
-ORDER-OF: OWi
-AUTHOR(S): Min-fuh Shyong
-HISTORY: None (Initial Implementation)

procedure Retrieve-.Data-.Element-.Facts
CType-Facts-Flag :in boolean;
Fact-Manager :in out

Envirorment..Types .Fact-.Buffer..Package .Hanager..Type) is

-- Local Declarations --

Fact-.Pointer- Environment-.Types .Fact-Buffer-Package. Iterator.Type;
A-FYact: Envirornment-.Types .Fact-.String-Type;

BlankFact: Environment-Types.Fact-.String-Type:= (others =>

-- Data element declarations --

Data-.Element..Record DataElement-Class .Data-.Element-Record-Type;
Data-Element-Pointer Data-.Element-.Manager. Data-Element-.Point er-.Type;

-- **** vai-ribles for Values(multi-field) ***-------------------------

Data..Ele-ValuesIteratoi:
Environment-Types .DataBuff er..Yackage. Iterator-Type;

Data-Ele-Values-Line: Environment..jypes .DD-Field-Type;

-**** variables for description(multi-field) ***--

TheIterator: Environment..types .Text.Buffer-Package.Iterator-Type;
A.Description.Line: Environment-Types .DD.TextType;

-- **** variables for Ref erence(multi-field) ***--------------------------

Ref erenceIterator:
Environment-Types .Text.Buffer..Yackage. Iterator-Type;

13-38

AReferenceLine EnvironmentTypes.DDTextType;

-- **** variables for changes(multifield) *** --

VersionIterator EnvironmentTypes.TextBufferPackage.IteratorType;
Version-Line EnvironmentTypes.DDTextType;

------------ -------- begin ---

begin

-- Clear the passed in fact.manager. 0(1) time.
Environmentypes.FactBufferPackage.Clear(FactManager);

-- Set pointer to beginning of manager. 0(1) time.
DataElementManager.ResetDataElementIterator;

-- Engage loop to extract the facts associated with an data element. The
-- facts oxtracted will have the format discussed above. If there are
-- no data element, this loop won't execute and an empty buffer is the
-- result.
-- This loop runs a times where a is the number of data elements. At this
-- time there is only one inner loop of O(x) time. Thus, the time
-- complexity is O(a * x).

while not DataElement-Manager.DataElementIteratorDone loop

-- outer loop --
-- Get a record., 0(0) time.
DataElementRecord:= DataElementManager.

ValueOfDataElementAtIterator;

-- Regardless of the TypeFactsFlag setting, the data element name is
-- always added to the fact buffer.

-- Place the data element name into a fact string at specific positions.
-- Initialize the fact string to all blanks first.
-- All string assignments are modeled as 0(1).

-- ****Create Data Element Name Fact****-----------------------------------

AFact:= Blank-Fact;

A_Fact(1..17) "data-element-name";

AFact(18) '

if DataElementRecord.Name /= DataElementClass.NullDataElementName then

A_Fact(19..43) DataElementRecord.Name;

else

AFact(19..22) $.null";

k -39

end if;
-- Store this fact in the fact buffer. 0(1) time.
EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);
-- (data-element-name Name)
-- (data-element-name null)

-- ****Create Data Element Data-Type Fact****--------------------------
AFact:= Blank-Fact;
AFact(1..17) "data-element-type";
AFact(18) '

AFact(19..43) DataElementRecord.Name;
AFact(44) '

-- This if then construct determines what goes into the last field.
-- If the data element data-type is not null then create a fact with the
-- data-type in it. Flag setting doesn't matter here.
if DataElementRecord.DataType /=

DataElementClass.NullDataElementDataType then
-- All statements modeled as 0() time.
AFact(45..69) := DataElementRecord.DataType;

else
-- The activity number is null, so create a null fact for
-- either the .esm file or the expert system. Again, the flag
-- setting does not matter. All 0(1) time.
A_Fact(45..48) := "null";

end if;

-- Store thir ;act in the fact buffer. 0(1) time.
Environment-jes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

-- (data-element-type Name Data-Type)

-- (data-element-type Name null)

-- ****Create Data Element minimum Fact****----------------------
AFact:= BlankFact;
AFact(1..20) "data-element-minimum";
AFact(21) :=';

A..Fact(22..46) DataElementRecord.Name;
AFac 247) '

if DataElementRecord.Minimum /
DataElementClass.NullDataElementValue then

AFact(48..62) DataElementRecord.Minimum;

else
AFact(48..51) ="null";
end if;

B-40

-- Store this fact in the fact buffer. 0(1) time.
EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

--(data-element-minimum Name Minimum)
-- (data-element-minimum Name null)

-- ****Create Data Element Maximum Fact****----------------------------
AFact:= Blank-Fact;
AFact(l..20) "data-element-maximum";
AFact(21) '

AFact(22..46) DataElement-Record.Name;
A_Fact(47) ' ;

-- This if then construct determines what goes into the last field.
-- If the data elen".-tt maximum is not null then create a fact with the
-- maximum in it. Flag setting doesn't matter here.

if DataElementRecord.Maximum /=
DataElementClass.NullDataElementValue then

-- All statements modeled as 0(1) time.
AFact(48..62) := DataElementRecord.Maximum;

else
-- The data element maximum is null, so create a null fact for
-- either the .esm file or the expert system. Again, the flag
-- setting does not matter. All 0(1) time.

AFact(48..51) := "null";

end if;

-- Store this fact in the fact buffer. 0(0) time.
EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

-- (data-element-maximum Name Maximum)
-- (data-element-maximum Name null)

-- ****Create Data Element data range Fact****----------------------------

A_Fact:= Blank-Fact;

AFact(1..23) "data-element-data-range";
AFact(24) '

AFact(25..49) DataElementRecord.Name;
A Fact(50) '

-- This if then construct determines what goes into the last field.
-- If the data element data range is not null then create a fact with the
-- range in it. Flag setting doesn't matter here.

if DataElementRecord.Data-Range /= Data-ElementClass.NullDataElement.Value then
-- All statements modeled as 0(0) time.

13-41

AFact(i..65) := DataElement_Record.DataRange;

else
-- The data element data range is null, so create a null fact for
-- either the .esm file or the expert system. Again, the flag
-- setting does not matter. All 0(1) time.
AFact(51..54) := "null";

end if;

-- Store this fact in the fact buffer. 0() time.
EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

-- (data-element-data-range Name Data-Range)
-- (data-element-data-range Name null)

-- ****Create one or more data element values Facts****

-- If the data element values is null then only a single fact is
-- created regardless of the flag setting.
if EnvironmentTypes.DataBufferPackage. IsEmpty

(DataElementRecord.Values) then

-- Create a null fact.
AFact:= Blank-Fact;

A_Fact(1..19) "data-element-values";

AFact(20) : ';
AFact(21..45) DataElementRecord. Name;

A-Fact(46)
AFact(47..50):= "null";'

-- Store this fact in the fact buffer. 0(0) time.

EnvironmentTypes.FactBufferPackage.AddItem
(AFact, Fact-Manager, FactPointer);

-- A false flag setting means the fact is for the expert system.
-- For ,' value, we don't want the whole value in the
-- working memory, so just store a "not-null" string'

elsif TypeFactsFlag = False then

-- Create a fact that shows the description is not null.

13-42

AFact:= Blank-Fact;

AFact(1..19) "data-element-values";
AFact(20) I ,;

A-Fact(21..45) DataElementRecord.Name;

A_Fact(46) ';

AFact(47..54):= "not-null";

-- Store this fact in the fact buffer. 0(1) time.

EnvironmentTypes.FactBufferPackage. AddItem
(AFact, Fact-Manager, Fact_Pointer);

else

-- At this point we know the flag is true which means the fact
-- is to go to the .esm file. However, there may be multiple lines
-- in the values thus a loop is required.

-- Set iterator to first line of description.
EnvironmentTypes.DataBufferPackage. InitializeIterator

(DataEleValuesIterator, DataElementRecord.Values);

-- Engage loop to get each line of the values and
-- make it a fact. This loop is O(x) time where x is the
-- number of lines in the description.
while not EnvironmentTypes.DataBufferPackage. IsDone

(DataEleValuesIterator) loop

-- Retrieve a single line of text. O() time.
DataEleValuesLine:= EnvironmentTypes.DataBufferPackage.

ValueOfItem(DataEleValuesIterator);

-- Create a fact representing a single ine of the description.
AFact:= Blank-Fact;

AFact(1..19) "data-element-values";
AFact(20) '

AFact(2l..45) DataElement-Record.Name;
AFact(46) '

AFact(47..71):= DataEle-Values-Line;

-- Store this fact in the fact buffer. 0(1) time.
EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

-- Advance pointer by one to next line.

EnvironmentTypes.DataBufferPackage.
GetNext(Data Ele ValuesIterator);

end loop;

end if;
-- (data-element-values Name null)

-- (data-element-values Name Linel) ...

13-43

-- ****Create one or more Data Element Description Facts****-----------------

-- If the data element description i3 null then only a single fact is
-- created regardless of the flag setting.
if EnvironmentTypes.TextBufferPackage. IsEmpty

(DataElementRecord.Description) then

-- Create a null fact.
AFact:= Blank-Fact;
AFact(l..9) "data-desc";

AFact(IO) : 1;
AFact(i1..35) DataElementRecord.Name;
AFact(36) '

AFact(37..40):= 'null";

-- Store this fact in the fact buffer. 0(1) time.
EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

-- A false flag setting means the fact is for the expert system.
-- For a description, we don't want the whole description in the
-- w.rking memory, so just store a "not-null" string!
elsif TypeFactsFlag = False then

-- Create a fact that shows the description is not null.
AFact:= Blank-Fact;
A_Fact(1..9) "data-desc";
AFact(O)
Aact(11..35) DataElementRecord.Name;
AFact(36) : ;
A_Fact(37..44):= "not-null";

-- Store this fact in the fact buffer. 0(1) time.
EnvironmentTypes.FactBuf.erPackage. AddItem

(AFact, Fact-Manager, Fact-Pointer);

else
-- At this point we know the flag is true which means the fact
-- is to go to the .esm file. However, there may be multiple lines

-- in the description thus a loop is required.

-- Set iterator to first line of description.
EnvironmentTypes.TextBufferPackage.InitializeIterator

(TheIterator, DataElementRecord.Description);

-- Engage loop to get each line of the description and

-- make it a fact. This loop is O(x) time where x is the
-- number of lines in the description.
while not EnvironmentTypes.TextBufferPackage. IsDone

13-44

(TheIterator) loop

-- Retrieve a single line of text. 0(1) time.
ADescriptionLine:= EnvironmentTypes.TextBufferPackage.

ValueOfItem(The_Iterator);

-- Create a fact representing a single line of the description.
AFact:= Blank-Fact;
AFact(i..9) "data-desc";
AFact(iO) ' ;

Aact(li..35) DataElementRecord.Name;

AFact(36) :-
AFact(37..96):= ADescriptionLine;

-- Store this fact in the fact buffer. 0(1) time.

EnvironmentTypes.FactBufferPackage. AddItem
(AFact, Fact-Manager, Fact-Pointer);

-- Advance pointer by one to next line.

EnvironmentTypes.Text..BufferPackage.GetNext(The.Iterator);
end loop;

end if;

-- (data-desc Name null)

-- (data-desc Name not-null)
-- (data-desc Name DescriptionLinel)

-- ****Create one or more data reference Facts****-----------------

-- If the data reference is null then only a single fact is

-- created regardless of the flag setting.

if EnvironmentTypes.TextBufferPackage. IsEmpty

(DataElementRecord.Reference) then

-- Create a null fact.

i._Fact:= BlankFact;

A_Fact(l..8) "data-ref";
A_Fact(9) '

A_Fact(1O..34) DataElementRecord.Name;
AFact(35)
A_Fact(36..39):= "null"l;

-- Store this fact in the fact buffer. 0(0) time.
EnvironmentTypes.FactBufferPackage. Add-ltem

(A.Fact, Fact-Manager, Fact-Pointer);

-- A false flag setting means the fact is for the expert system.

-- For a ref vrence, we don't want the whole reference in the

-- working memory, so just store a "not-null" string'

13-45

elsif TypeFactsFlag = False then

-- Create a fact that shows the reference is not null.
AFact:= Blank-Fact;
A_Fact(i..8) "data-ref";
AFact(9) ' "
AFact(1O..34) DataElementRecord.Name;
AFact(35)
AFact(36..43):= "not-null";

-- Store this fact in the fact buffer. 0(I) time.
EnvironmentTypes.FactBufferPackage.AddItem

(AFact, FactMaatager, Fact-Pointer);

else
-- At this point we know the flag is true which means the fact
-- is to go to the .esm file. However, there may be multiple lines
-- in the reference thus a loop is required.

-- Set iterator to first line of description,
EnvironmentTypes.TextBufferPackage.InitializeIterator

(ReferenceIterator, DataElementRecord. Reference);

-- Engage loop to get each line of the reference and
-- make it a fact, This loop is Ox) time where x is the
-- number of lines in the reference.
while not EnvironmentTypes.TextBufferPackage. IsDone

(ReferenceIterator) loop

-- Retrieve a single line of text. 0() time.
AReferenceLine:= EnvironmentTypes.TextBufferPackage.

ValueOfItem(ReferenceIterator);

-- Create a fact representing a single line of the description.
AFact:= Blank-Fact;
AFact(i..8) "data-ref";
AFact(9) :-
AFact(10..34) DataElementRecord.Name;
AFact(35)
AFact(36..95):= AReferenceLine;

-- Store this fact in the fact buffer. 0(1) time.
EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

-- Advance pointer by one to next line.
EnvironmentTypes.TextBufferPackage. GetNext(Reference_Iterator);

end loop;

end if;

-- (data-ref Name not-null)

B-46

-- (data-ref Name null)
-(data-ref Name ReferenceLinel)

-- ********* Create data reference type facts 120390 ***********

A-Fact Blank-.Fact;
Aj..act(l. .13) "data-ref-type6 ;
A-Fact(14)'
Ajyact(15. .39) Data-ElementRecord.Name;
A..Yact(40) P '

if Data-Element-Record .Ref erence-Type/
Environment-.Types .Null..ReferenceType then

A-.Fact(41. .65) Data-Element-Record.Reference-Type;

else
A-.Fact(41. .44) "1null";

end if;

Environment-Types .Fact-.Buffer-.Package .Add-Item
(A-Fact, Fact-Manager, Fact-.Pointer);

-(data-ref-type Name Reference-.Type) or
-(data-ref-type Name null)

********Create data element Version facts************

A-Fact Blank-.Fact;
A-Fact(1. .12) "data-ele-ver";
A-Fact(13) .

AFact(14. .38) Data_Element_Record.Name;

A-.Fact(39)

if Data-Element-jlecord.Version 1
Data-Element-.Class .Null-Data-.Element-.Version-number then

AFact(40. .49) Data_.Element_.Record.Version;

else
AFact(40. .43) "1null";

end if;

Environment-Types .Fact-.Buffer-Package .Add-Item

(A..Fact, Fact-Manager, Fact-.Pointer);

-(data-ele-ver Name Data-Element-Version) or
-(data-ele-ver Name null)

-- *** Create one or more data element Version-Changes facts ----------------------

13-47

-if the data element version changes is null then only a single
-fact is created regardless of the flag setting

if Environment-Types .Text-Buffer-package.Is-.Empty
(Data-.Element-.Record. Version-.Changes) then

-- true it is empty

A-Fact Blank-Fact;
A-.Fact(1. .12) "data-e-v-chg";
A_.Fact(13) ')
A-Fact(14. .38) Data_.ElementRecord.Name;
A-Fact(39)) '

A-Fact(40. .43) "1null";

Environment-.Types .Fact-Buffer-.Package .Add&Item
(A.Fact, Fact-MYanager, Fact-.Pointer),;

elsif Type-.Facts-.Flag = false then

A-.Fact :=Blank-Fact;
A-Fact Ci.. 12) ="data-e-v-chg";

A-Fact(13) := 1
A-.Fact(14. .38) :=Data-ElementRecord.Name;

A-.Fact(39):= ;
A-F.act(40. .47) "not-null";'

Environment-Types .Fact-Buffer.Package. AddItem
(A.Fact, Fact-.Manager, Fact-Pointer);

else -- version not empty show the version changes to .esm -

Environment-.Types.Text.Buffer-Package. Initialize-Iterator
(VersionIterator, Data-Element-.Record.Version-Changes);

-- Engage a loop to get each version of changes and make it a fact

while not Environment-Types .Text-Buffer-.Package. Is-Done
(VersionIterator) loop

Version-Line :
Environment-.Types .Text-.Buffer-.Package .Value-.OfItem(VersionIterator);

A-Fact :=Blank-.Fact;
A..Fact(l. .12) "data-e-v-chg";
A-.Fact(13) '= I
AFact(14. .38) DataElement-ecord.Nane;
A-Fact(39) '

13-48

A-Fact(40. .99) :=Version-Line; -- data-e-v-chg Name null)
-(data-e-v-chg Name nat-null)
-(data-e-v-chg Name Version-changes)

Environment.Types .Fact-.Buffer-.Package .Add-Item
(A..Fact, Fact-.Manager, Fact-.Pointer);

Envirornnent.Types .Text-Bufer-Package.Get-Next(VersionIterator);

end loop;
end if;

-- ****Create data element Date Fact ****---

A-.Fact:= Blank-.Fact;
A.Yact(1. .13) "data-ele-date";

A-Fact (14) j)
A-.Fact(IS. .39) Data-Element-R~ecord.Name;
AFact(40))

if Data-Element-Record.Date /= Environment-ypes.Null.Date then
A-.Fact(41. .48) :=Data-Element-.Record.Date;

else

A-.Fact(4l. .44) :="null";
end if;

-- Store this date fact in the fact buffer. OW1 time.
Environment-Types .Fact.Buffer.Yackage.Add-Item

(A-Fact, Fact-Manager, Fact-.Pointer);

-(date-ele-date Name mm/dd/yy)
-(eata-ele-date Name null)

-- ****Create data element Author Fact**** ---------------------
A-.Fact:= Blank-.Fact;
AFact(1. .15) "data-ele-author";
AFact(16)
A-Fact(17. .41) =Data-Element-.Record.Name;

AFact (42) .

-This if then construct determines what goes into the last field.
-If the data element author is not null then create a fact with the
-data element author in it. Flag setting doesn't matter here.

if Data-.Element..Record. Author /= Environment-Types .Null-Author-Name then
-- All statements modeled as OW1 time.
A-Fact(43. .67) := Data-Element..Record.Author;

else
-- The data element author is null, so create a null fact f or

B1-49

-- either the .esm file or the expert system. Again, the flag
-- setting does not matter. All 0(1) time.

AFact(43..46) := "null";
end if;

-- Store this fact in the fact buffer. O(1) time.
EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

-- (data-ele-author Name Author)
-- (data-ele-author Name null)

DataElementManager.AdvanceIteratorToNextDataElement;

end loop;
end RetrieveDataElementFacts;

..

-- DATE: 2/21/91

-- VERSION: 1.0
-- NAME: ***PROCEDURE RESTORE DATA ELEMENT FACTS*** --

-- MODULE NUMBER: TBD
-- DESCRIPTION: This procedure accepts a buffer of data element facts --

-- and restores that information into the data element manager. Of --

-- special note is that the procedure assumes the facts are in the --

-- same order in which they were stored.
-- ALGORITHM: A single while loop controls the execution with an --

-- embedded call to an O(i) procedure.
-- PASSED VARIABLES: TheFactBuffer (contains the facts) --

-- RETURNS: None
-- GLOBAL VARIABLES USED: None
-- GLOBAL VARIABLES CHANGED: None

-- FILES READ: None
-- FiLES WRITTEN: None

-- HARDWARE INPUT: None
-- HARDWARE OUTPUT: None

-- MODULES CALLED: None
-- CALLING MODULES: EssentialIO.RestoreProject --

-- ORDER-OF: order of is O(a * max (x, z * (a * z))) where a is the --

-- number of data elements, x is the number of lines in a description --

-- and z is the number of reference that a data element has. Note --

-- that this order of may change when more of the data element --

-- manager facts are restored.
-- Note that all string slice operations are modeled as 0(1) time. --

-- AUTHOR(S): Min-fuh Shyong
-- HISTORY: none (Initial Implementation) --

B-50

procedure Restore.Data-.Element-.Facts
CThe-.Fact-.Buffer :in
Environment-.Types .Fact..Euffer..Package.Manager-.Type) is

-- Local Declarations --

Fact-.Pointer: Environment.Types .Fact-.Buffer-.Package. Iterator-.Type;
A-.Fact: Environnent..Types.Fact-.String-.Type;
First-.Char: natural:= 0;
Char-.Position: natural:= 0;
Temp..Yos: natural:= 0;
More..Descriptions-.Flag: boolean;

-- Data Element Related Declarations --

Data-.Element-.Record: Data-Element-.Class .Data..Element.Record-.Type;
Data-Element-Pointer: Data-Element-.Manager .Data..Element-Pointer-.Type;
Null-Data.Element..Record: Data-.Element-.Class .Data..E3ement..RecordType;

The-Iterator: Environ~ment-Types .Text-.Buffer-.Package. Iterator-.Type;

Data-Ele-.Values-Line Environment-.Types .DD-.Field-.Type;
A-Description-.Line Environuent-.Types .DD-.Text-.Type;
A-Reference-Line Environment-.Types .DD..Text..Type;
Version-.Line Environment-.Types .DD.Text.Type;

Found-.Flag: boolean:= False;
Result-Flag: boolean;

-- Exception --

-This exception is declared here because the Essential 10 package does
-not check to see the facts are in any specific order.

Invalid-.Fact-.Sequence.For-.Data.Element: exception;
Data-Element..Hierarchy..Error-During-.Restore: exception;

------- --- begin Restore Data Element ----------------------
begin
-- Check for empty buffer of facts. If empty, do nothing.
if Environent-.Types .Fact..Buffer..Package .1sEmpty(The_.FactBuffer) then

return;
end if;

-- Initialize iterator to first fact.
Environxnent-Types .Fact-.Buffer-Package .Initialize-Iterator

(Fact-Pointer, The-Fact-Buffer);

-- Engage loop to extract the data element facts from a buffer

B-51

-- one at a time This loop will execute a times -- once for
-- each data element. Note that there are many facts associated with
-- a single data element. This loop runs a times. The loop has one
-- inner loop of order x and one procedure call of (a * z). Thus,
-- order of is O(a * max (x, z*(a * z)))

While not EnvironmentTypes.FactBufferPackage.IsDone(FactPointer) loop
-- Get a record.

AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem
(Fact-Pointer);

-- Since we put the information in the string, we know the
-- exact columns where information should be.
-- All string assignments are modeled as 0(i);
-- Insure the fields are all blanks.

DataElementRecord:= NullDataElementRecord;

-- *** Restore Data Element Name ***- -------------------------------

-- The first fact should be the name,
if AFact(l..17) /= "data-element-name" then

TextIO.PutLine(AFact);

TextIO.PutLine("I am I..p: data-element-name. ");
raise InvalidFactSequenceForDataElement;

end if-

-- The Data Element name must be in columns 19 through 43.
DataElementRecord.Name:= AFact(19..43);

-- Check to see if Data Element already exists. O(a) call.
DataElementManager.DataElementExists(DataElementRecord.Name,

DataElementPointer, Found-Flag);

if Found-Flag False then
-- Do O(a * z) procedure call to create a data element.

DataElementManager.CreateDataElement
(DataElementRecord.Name, DataElementPointer);

end if;

-- Advance pointer to next fact in manager. 0().
EnvironmentTypes.FactBufferPackage.GetNext(Fact_Pointer);
-- Get a fact. 0(1) time.

AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem
(Fact-Pointer);

-- *** Restore Data Element Data Type ***- ---------------------------

-- This fact should be the Data Element Data Type.

B-52

if A-.Fact(1. .17) /= "data-element-type' then
Text-.IO .Put-.Line(A-.Fact);
Text-.IO.Put-Line(III am Exp: data-element-type.)

raise Invalid-Fact-Sequence-orData-.Element;
end if;

-- Columns 19 through 43 must be the same data element name.
if A-.Fact(19. .43) /= Data-Element-Record.Name then

Text-..Put-Line(A-.Fact);
Text.10.Put-Line('I am Exp: data-element-type.Name.)

raise Invalid-act-SequenceFor-Data.Element;

end if;

-Columns 45 through 69 hold the data element data type if it is

-- not null.
if A..Fact(45. .48) = null" then

-- Do nothing, there was no data element data type.
null;

else

-- Get the number,
Data..Element..Record.Data-Type:= A...act(46. 69);

-Do 0(1) procedure call to update the data type in the data element

-- manager.

Data-.Element-Manager .Set..Data-Element-Data-Type
(Data-.Element..ointer, Data..Element-.Record .Data..Type);

end if;

-- Advance pointer to next fact in manager.
Environment-Types .Fact-Buffer-Package .Get-Next(Fact.Yointer);

-If the fact buffer is empty at this point there is an error
-in the format.

if Environ~ment-Types .Fact-.Buffer-.Package. Is.-Done(Fact_.Pointer) then
Text-.IO .Put-Line(A-.Fact);

Text-10.Put..Line('I am Exp: data-element-type.Is-Done)

raise Invalid-actSequenceFor-Data-.Element;

end if;

-- Get a fact.

A-Fact:= Environment-Types .Fact-.BufferPackage .Value-Of-Item
(Fact-.Pointer);

-- **Restore Data Element Minimum ***----------------------------------

-This fact should be the Data Element Minimum.

if A-.Fact(i. .20) /= "data-element-minimum" then
Text-O.Put-Linp(Aj.act);

Text-IO.Put-Line("I am Exp: data-element-minimum.)

raise Invalid-Fact-SequenceForData-Element;

end if;

B3-5.3

-- Columns 22 through 46 must be the same data element name.
if AFact(22..46) /= DataElementRecord.Name ther.

TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: data-element-minimum.Name. ");

raise InvalidFactSequenceForDataElement;
end if;

-- Columns 48 through 62 hold the data element minimum if it is
-- not null.
if Ajact(48..51) = "null" then

-- Do nothing, there was no data element minimum.
null;

else
-- Get the minimum.

DataElementRecord.Minimum:= AFact(48..62);
-- Do 0() procedure call to update the minimum in the data element
-- manager.

DataElementManager.SetDataElementMnimum
(DataElementPointer, DataElementRecord.Minimum);

end if;

-- Advance pointer to next fact in manager.

EnvironmentTypes.FactBufferPackage.Get_Next(FactPointer);
-- If the fact buffer is empty at this point there is an error
-- in the format.
if EnvironmentTypes.FactBufferPackage.IsDone(FactPointer) then

TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: data-element-minimum.IsDone. ");
raise Invalid-FactSequenceForDataElement;

end if;

-- Get a fact.

AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem
(Fact-Pointer);

-- *** Restore Data Element Maximum ***- ---------------------------

-- This fact should be the Data Element Maximum.

if A_Fact(i..20) /= "data-element-maximum" then

TextIO.PutLine(AFact);

TextIO.PutLine("I am Exp: data-element-maximum ");

raise InvalidFactSequenceForDataElement;
end if;

-- Columns 22 through 46 must be the same data element name.
if AFact(22..46) /= DataElementRecord.Name then

B-54

Text-.I0 .Put..Line(A-.Fact);
Text-O.Put-.Line("I am Exp: data-element-maximum.Name.)

raise Invalid-actSequence-For.Data-.Element;
end if;

-- Columns 48 through 62 hold the data element maximum if it is
-- not null.

if A..Fact(48. .51) = "null" then
-- Do nothing, there was no data element maximum.
null;

else
-- Get the maximum.
Data-.Element-.Record.Maximum: = A-Fact(48. .62);

-Do 0(i) procedure call to update the maximum in the data element
-- manager.

DataElementjManager.Set-.Data-.Element-Maximum
(Data-Element-Pointer, Data.Element.Record.Maximum);

end if;

-- Advance pointer to next fact in manager.
Environment.Types .Fact-.Buffer-.Package .Get-Next(Fact..Pointer);

-If the fact buffer is empty at this point there is an error
-- in the format.

if Environment-Types .Fact-.Buffer-.Package. Is-.Done(Fact..Yointer) then
Text-IO .Put..Line(AFact);
Text-I0.Put-Line("I am Exp: data-element-maximum.Isdone.)

raise Invalid-.Fact..$equence-.For-Data-.Elemen*;
end if;

-- Get a fact.
A-.Fact: Environment-Types .FactBuff er-Package .Value-Of-.Item

(Fact-.Pointer);

-- **Restore Data Element Data Range ***-------------------------------

-- This fact should be the Data Element Data range.

if A-.Fact(l. .23) /= "data-element-data-range" then
Text.I0 . Put-Line (A_.Fact);
Text-.10.Put-Line(C"I am Exp: data-element-data-range.)

raise Invalid-j'act-Sequence-ForData.Element;
end if;

-- Columns 25 through 49 must be the same data element name.
if A-.Fact(25. .49) /= Data-Element-Record.Name then

TextIO . Put-Line (A-Fact);
Text-IO.Put-Line("I am Exp: data-element-data-range.Name p)

raise Invalid-Fact-Sequence-ForData-Elenent:
end if;

-- Columns 51 through 65 hold the data element data range if it is
-- not null.

if AFact(51..54) = "null" then
-- Do nothing, there was no data element data range.
null;

else

-- Get the range.

DataElementRecord.DataRange:= AFact(51..65);
-- Do 0(l) procedure call to update the data range in the data element
-- manager.

DataElementManager.SetDataElementDataRange
(DataElementPointer, DataElementRecord.DataRange);

end if;

-- Advance pointer to next fact in manager. ---

EnvironmentTypes.FactBufferPackage.Get_Next(FactPointer);
-- If the fact buffer is empty at this point there is an error
-- in the format.
if EnvironmentTypes.FactBufferPackage. IsDone(FactPointer) then

TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: data-element-data-range.IsDone. ");

raise InvalidFactSequenceForDataElement;
end if;

-- Get a fact.

AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem
(Fact-Pointer);

-- *** Restore Data Element Values facts ***- --------------------------

if AFact(1..19) /= "data-element-values" then
Text_IO.PutLine(AFact);
Text_IO.PutLine("I am Exp: data-element-values. ");

raise InvalidFactSequenceForDataElement;

end if;

-- Columns 21 through 45 must be the same data element name.
if AFact(21..45) /= DataElement_Record.Name then

TextIO.PutLine(A_Fact);

TextIO.PutLine("I am Exp: data-element-values.Name. ");

raise InvalidFactSequenceFor_DataElement;

end if;

-- If the values list is null then we are done with this attribute.
-- Need only to advance the pointer by one for the outer locp.

B-56

if AFact(47..50) = "null" then

-- There is no values list for the data element, so just advance

-- the fact pointer.
-- Advance pointer to next fact in manager. 0(1) time.
EnvironmentTypes.FactBufferPackage.GetNext(FactPointer);

else

-- There must be one or more values.

-- This loop will run z times where z is the number of values.

while AFact(i..19) = "data-element-values" loop

-- Columns 21 through 45 must be the same data element name.

-- 0(1) time complexity.

if A.act(21..46) /= DataElementRecord.Name then
Text-IO.PutLine(AFact);

TextIO.PutLine("I am Exp: data-element-values.Name. in while ");

raise InvalidFact-SequenceForDataElement;

end if;

-- Pull a Value from the fact.
DataEleValuesLine:= Aact(47..71);

-- In order to add a value, the Data Element Manager
-- requires that the value already exist as a data element.

-- Thus, must create the data element first if needed.

-- Check to see if data element already exists. O(a) call.

Data.ElementManager.DataElementExists(DataEleValuesLine,

Data-ElementPointer, Found-Flag);

if Found-Flag = False then
-- Do O(a * z) procedure call to create a data element.

DataElementManager. CreateDataElement

(DataEleValues..Line, Data-ElementPointer);

end if;

-- Do another O(a * z) procedure call to add this data element

DataElementManager.SetDataElementValues

(DataElementPointer, Data-ElementRecord.Values);

-- Must now call Data Element Exists again in order to reset the
-- pointer for any future operations. O(a) time.

DataElementManager.DataElementExists(DataElementRecord.Name,

Data-ElementPointer, Found-Flag);

B-57

-- Acance pointer to next fact in manager.
EnvironmentTypes.FactBufferPackage.GetNext(FactPointer);

-- If it is not empty get the next fact. 0(1) time.
if not EnvironmentTypes.FactBufferPackage.IsDone

(Fact-Pointer) then
AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem

(Fact-Pointer);
else

TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: data-element-values in else ");

raise InvalidFactSequenceForDataElement;
end if;

end loop;
end if;

-- *** Restore Data Element Description Facts ***----------------------

if EnvironmentTypes.FactBufferPackage. IsDone(FactPointer) then
TextIO.PutLine(AFact);
TextIO.PutLine("I am Exception: data-element IsDone ");

raise InvalidFactSequenceForDataElement;
end if;

AFact:= EnvironmentTypes.Fact.BufferPackage.ValueOfItem
(Fact-Pointer);

-- The series of fact(s) should be the data element description.
-- There is at least one data-desc fact and possible more.
if AFact(1..9) /= "data-desc" then

TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: data-desc. ");

raise InvalidFactSequenceForDataElement;
end if;

-- Columns 11 through 35 must be the same data element name.
if AFact(11..35) /= DataElementRecord.Name then

TextIO.Put.Line(AFact);
TextIO.PutLine("I am Exp: data-desc.Name ");
raise InvalidFactSequenceForDataElement;

end if;

-- If the descziptlon is null then we are done with this attribute.
-- Need only to advance the pointer by one for the outer loop.
if AFact(37..40) = "null" then

-- There is no description for the data element, so just advance
-- the fact pointer.
-- Advance pointer to next fact in manager. 0(0) time.
EnvironmentTypes. FactBufferPackage. GetNext(FactPointer);

B- 58

else
-- There must be one or more lines in the description.
-- This loop will run x times where x is the number of lines in the
-- description.
while AFact(1..9) = "data-desc" loop

-- I realize this check is repetitive on the first iteration.
-- Columns 11 through 35 must be the same data element name.
-- 0(1) time complexity.
if Aact(1..35) /= DataElementRecord.Name then

TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: data-desc.Name in while "1);
raise InvalidFactSequenceForDataElement;

eid if;

-- Pull the description from the fact.

ADescriptionLine:= AFact(37..96);

-- Add the description to the description part of the
-- data element record. 0(i) time.

EnvironmentTypes.TextBufferPackage.AddItem
(ADescriptionLine, DataElementRecord.Description, TheIterator);

-- Advance pointer to next fact in manager.
EnvironmentTypes.FactBufferPackage. GetNext(FactPointer);

-- If it is not empty get the next fact. 0(1) time.
if not EnvironmentTypes.FactBufferPackage. IsDone

(Fact-Pointer) then
AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem

(Fact-Pointer);
else

-- If this is the last fact of the last data element exit the
-- loop.
TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: data-desc in else ");
raise InvalidFactSequenceForDataElement;

end if;
end loop;

-- There were one or more lines in the description so now must
-- place them with the data element in the data element manager. 0(0).
DataElementManager.SetDataElementDescription

(DataElementPointer, DataElementRecord.Description);

end if;

-- If the fact buffer is empty at this point there is an error
-- in the format. 0(i) time. I know this because
-- RetrieveDataElementFacts will at least put a null entry

B-59

if EnvironmentTypes.FactBufferPackage.IsDone(FactPointer) then
TextIO.PutLine(AFact);
TextIO.PutLine('I am Exp: data-desc.IsDone ");

raise InvalidFactSequenceForDataElement;

end if;

-- Get a fact.

AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem

(Fact-Pointer);

-- The series of fact(s) should be the data element description.
-- There is at least one data-desc fact and possible more.

-- *** Restore Data Element Reference Facts ***- ----------------------------

if EnvironmentTypes.FactBufferPackage. IsDone(Fact_Pointer) then
TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: data-ref.IsDone. ");

raise InvalidFactSequenceForDataElement;
end if;

-- Get a fact.
AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem

(Fact-Pointer);

-- The series of fact(s) should be the Data Element Reference.
-- There is at least one data-ref fact and possible more.
if AFact(1..8) /= "data-ref" then

TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: data-ref. ");
raise InvalidFactSequenceForDataElement;

end if;

-- Columns 10 through 34 must be the same data element name.
if AFact(10..34) /= DataElementRecord.Name then

Text-lO.PutLine(AFact);

TextIO.PutLine("I am Exp: data-ref.Name ");

raise InvalidFactSequenceForDataElement;
end if;

-- If the Reference is null then we are done with this attribute.

-- Need only to advance the pointer by one for the outer loop.

if AFact(36..39) = "null" then

-- There is no reference for the data element, so just advance
-- the fact pointer.
-- Advance pointer to next fact in manager. 0(0) time.

B-60

EnvironmentTypes.FactBufferPackage.GetNext(FactPointer);

else
-- There must be one or more lines in the reference.
-- This loop will run x times where x is the number of lines in the
-- reference.
while AFact(l..8) = "data-ref" loop

-- I realize this check is repetitive on the first iteration.
-- Columns 10 through 34 must be the same data element name.
-- 0() time complexity.

if AFact(iO..34) /= DataElementRecord.Name then
TextIO.PutLine(AFact);
Text_IO.PutLine("I am Exp: data-ref.Name in while ");

raise Invalid-FactSequenceForDataElement;
end if;

-- Pull the reference from the fact.

AReferenceLine:= AFact(36..95);

-- Add the reference to the reference part of the
-- data element record. 0(1) time.
EnvironmentTypes.TextBufferPackage.AddItem

(AReferenceLine, DataElementRecord.Reference, TheIterator);

-- Advance pointer to next fact in manager.

EnvironmentTypes.FactBufferPackage.GetNext(Fact_Pointer);

-- If it is not empty get the next fact. 0() time.

if not EnvironmentTypes.FactBufferPackage. IsDone
(Fact-Pointer) then

AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem
(Fact-Pointer);

else
-- If this is the last fact of the last data element exit the
-- loop.
TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: data-ref. in else ");
raise InvalidFactSequenceForDataElement;

end if;
end loop;

-- There were one or more lines in the reference so now must
-- place them with the data element in the data element manager. 0(0).
DataElementManager.SetDataElementReference

(DataElementPointer, DataElementRecord.Reference);

end if;

B-61

-- *** Restore Data Element Reference Type Facts ***------------------

if EnvironmentTypes.FactBufferPackage.IsDone(FactPointer) then

TextIO.PutLine(AFact),
TextIO.PutLine("I am Exception: data-element reference type Is-Done ");

raise InvalidFactSequenceForDataElement;

end if;

-- Advance pointer to next fact in manager. 0(1).

--EnvironmentTypes.FactBufferPackage.GetNext(FactPointer);

-- Get a fact. 0(1) time.
AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem

(Fact-Pointer);

-- This fact should be the Data Element Reference Type.

if AFact(1..13) /= "data-ref-type" then
TextIO.PutLine(AFact);

TextIO.PutLine("I am Exp: data-ref-type. ");

raise Invalid-FactSequenceFor_DataElement;

end if;

-- Columns 15 through 39 must be the same data element name.

if AFact(15..39) /= DataElementRecord.Name then
TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: data-ref-type.Name ");

raise InvalidFactSequenceForDataElement;
end if;

-- Columns 41 through 65 hold the Data Element Reference Type if it is

-- not null.

if AFact(41..44) = "null" then

-- Do nothing, there was no Data Element Reference Type.

null;

else
-- Get the Reference type

DataElementRecord.ReferenceType:= AFact(41..65);

-- Do 0(0) procedure call to update the data element in the
-- data element manager.

DataElementManager.SetDataElementReferenceType

(DataElementPointer, DataElementRecord.ReferenceType);

end if;

B-62

-- *** get Data Element Version Facts ***- ------------------------------------

if EnvironmentTypes.FactBufferPackage.IsDone(FactPointer) then

Text-IO.PutLine(AFact);

TextIO.PutLine("I am Exception: data- ");

raise InvalidFactSequenceForDataElement;

end if;

-- Advance pointer to next fact in manager. 0().
EnvironmentTypes.FactBufferPackage.GetNext(FactPointer);

-- Get a fact. 0(1) time.

AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem
(Fact-Pointer);

-- This fact should be the Data Element Version.

if AFact(l..12) /= "data-ele-ver" then
TextIO.PutLine(AFact);

TextIO.PutLine("I am Exp: data-ele-ver ");
raise InvalidFactSequenceForDataElement;

end if;

-- Columns 14 through 38 must be the same Data element name.
if AFact(14..38) /= DataElementRecord.Name then

TextIO.PutLine(AFact);

TextIO.PutLine("I am Exp: data-ele-ver.Name ");
raise InvalidFactSequenceForDataElement;

end if;

-- Columns 40 through 49 hold the data element version if it is
-- not null.

if AFact(40..43) = "null" then

-- Do nothing, there was no data element version.

null;

else
-- Get the version.
DataElementRecord.version:= AFact(40..49);

-- Do 0(l) procedure call to update the data element in the

-- data element manager.
DataElementManager.SetDataElementVersion

(DataElementPointer, DataElementRecord.Version);

end if;

-- *** get Data Element Version Changes Facts ***-------------------------

-- Advance pointer to next fact in manager.

B-63

EnvironmentTypes.FactBufferPackage.GetNext(Fact_Pointer);
-- If the fact buffer is empty at this point there is an error
-- in the format.

if Environment_-Types.FactBufferPackage.Is_-Done(FactPointer) then
TextIO.PutLine(AFact);
Text1IO.PutLine("I am Exp: data-e-v-chg. IsDone S);

raise InvalidFactSequenceForDataElement;
end if;

-- Get a fact.
AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem

(Fact-Pointer);

-- The series of fact(s) should be the Data Element Version Changes.
-- There is at least one data-e-v-chg fact and possible more.
if AFact(i..12) /= "data-e-v-chg" then

TextIO.PutLine(AFact);
Text-IO.PutLine("I am Exp*- data-e-v-chg. ");

raise InvalidFactSequenceForDataElement;
end if;

-- Columns 14 through 38 must be the same data element version name.
if AFact(14..38) /= DataElementRecord.Name then

TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: data-e-v-chg.Name ");

raise InvalidFactSequenceForDataElement;
end if;

-- If the version change is null then we are done with this attribute.
-- Need only to advance the pointer by one for the outer loop.

if AFact(40..43) = "null" then
-- There is no version change for the data element, so just advance
-- the fact pointer.

-- Advance pointer to next fact in manager. 0(1) time.

EnvironmentTypes.Fact-BufferPackage.GetNxt(FactPointer);

else
-- There must be one or more lines in the version changes.
-- This loop will run x times where x is the number of times in the
-- version change.

while AFact(1..12) = "data-e-v-chg" loop
-- I realize this check is repetitive on the first iteration.

B-64

-- Columns 14 through 38 must be the same data element name.
-- 0() time complexity.
if AFact(14..38) /= DataElementRecord.Name then

TextIO.PutLine(AFact);
TextIO.PutLine("I am Exp: data-e-v-chg. while ");
raise InvalidFactSequenceForDataElement;

end if;

-- Pull the version from the fact.
VersionLine:= AFact(40..99);

-- Add the version change to the Version Changes part of the
-- Data Element record. 0(0) time.

EnvironmentTypes.TextBufferPackage.AddItem
(Version-Line, DataElementRecord.VersionChanges, TheIterator);

-- Advance pointer to next fact in manager.

EnvironmentTypes.FactBufferPackage.GetNext(FactPointer);

-- If it is not empty get the next fact. 0(i) time.
if not EnvironmentTypes.FactBufferPackage.IsDone

(Fact-Pointer) then
AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem

(Fact-Pointer);

else
-- If this is the last fact of the last data element exit the
-- loop.

Text_IO.PutLine(AFact);
TextIO.PutLine("I am Exp: data-e-v-chg. else ");
raise InvalidFactSequenceForDataElement;

end if;
end loop;

-- There were -ne or more lines in the version change so now must
-- place them with the data element in the data element manager. 0(1).
DataElementManager.SetDataElementVersionComments

(DataElementPointer, DataElementRecord.VersionChanges);

end if;

--*** get Data Element Date Facts *** ----------------

if EnvironmentTypes.FactBufferPackage.IsDone(FactPoanter) then
TextIO.Put_Line(AFact);
TextIO.PutLine("I am Exception: data- ");

raise InvalidFactSequenceForDataElement;

B-66

end if;

-- Get a fact. 001) time.
A-.Fact:= Enviroiuent-.Types .Fact-.Buffer-.Package.Value-.O-Item

-- This fact should be the data element date.

if A-.Fact(1 ,.13) /= "data-ele-date" then
Text..I0. Put..Line (A..Fact);
Text-I0.Put-.Line("I am~ Exp: data-ele-data)

raise Invalid.Fact.Sequence-or.Data.Element;
end if;

-- Columns 15 through 39 must be the same Data element namte.
if Ajact(19. 39) /= Data-.Element-Record.Name then

Text O.Put.Line(A.Fact);
Text-10.Put-.Line("I am Exp: data-ele-data.Nane I)

raise Invalid.Fact.Sequence.For.Data-.Element;
end if; I

-Columns 41 through 48 hold the data element date if it is
-- not null.

if A...act(41. 44) ="null" then
-- Do nothing, there was no data element date.
null;

else
-- Get the date.

DataElement-Record.Date:= Aj'act(41- 48);
-Do 0(1) procedure call to update the Data element in the
-Data Element manager.

Data-Elenent-Manager.Set-Dat a-ElementDate
(Data..Element-Pointer, Data-.ElementRecord.Date);

end if;

-- **Get Data Element Author Facts ***-----------------------------

if Environment-Types .Fact-.Buffer-Package .Is-Done(Fact-Pointer) then
Text-IO.Put-Line(A-.Fact);
TextI0.PutLine('I am Exception: data-element-author Is-Done)

raise Invalid-.Fact-.Sequence-ForData..Element;
end if;

-- Advance pointer to next fact in manager. 0(1).
Environment-Types .Fact-Buffer-Package .Get..ext(FactPointer);

-- Get a fact. 0(1) time.

A-Fact:= Environment..Types .Fact-Buffer-Package.Value-.Of-Item

B3-66

-- MODULE NUMBER: TBD

-- DESCRIPTION:
-- When the flag TypeOfFactsFlag is set to true,it means the --

-- client procedure wants all the facts that are necessary for --

-- the .esm file. If the flag is false, then the facts for --

-- the expert system are returned. Facts of the same type have --

-- the same format no matter where they are destined. In this --

-- case, the historical name is brtt a single fact. Future --

-- modifications to SAtool II could include more information in --

-- the HistoricalActivityManager however, thus this procedure --

-- is of use.

-- historical tuple facts: (retrieved when creating a .esm file or --

-- when performing check syntax) --

-- 1) a predefined attribute name (historical-name) --

-- 2) the historical name (if the name is null, the word 'null' is --

-- placed in the field.

-- ALGORITHM: All simple 0(1) statements and 2 0(1) procedure calls. --

-- PASSED VARIABLES: TypeFactsFlag, Fact-Manager --

-- RETURNS: None

-- GLOBAL VARIABLES USED: None
-- GLOBAL VARIABLES CHANGED: None

-- FILES READ: None
-- FILES WRITTEN: None

-- HARDWARE INPUT: None
-- HARDWARE OUTPUT: None

-- MODULES CALLED: None
-- CALLING MODULES: TBD

-- ORDER-OF: 0(i)

-- AUTHOR(S): Min-fuh Shyong
-- HISTORY: None (Initial Implementation)

procedure RetrieveHistoricalActivityFacts
(TypeFactsFlag : in boolean;
Fact-Manager in out
EnvironmentTypes.FactBufferPackage.ManagerType) is

-- Local Declaration --

Fact-Pointer : EnvironmentTypes.FactBufferPackage. IteratorType;
A-Fact : EnvironmentTypes.FactStringType;
Blank-Fact : EnvironmentTypes.FactStringType := (others => '

-- Historical Activity Declarations --

HistoricalActivityRecord :
HistoricalActivityClass.HistoricalActivityRecordType;

HistoricalActivityPointer:
HistoricalActivityManager.Historica]_ActivityPointerType;

13-68

begin

__ Clear the passed in fact-manager --

Environment-.Types .Fact...Bufer-Package .Clear (Fact-.Maanager);

-- Reset --

Historical-Activity-Manager .Reset-.Historicai...Activity-.Iterator;

-- take facts --

while not Historical-Activity-tanager. Historical-Activity-teratorDone loop

Historical-.ActivityRecord :

Historical-.Activity-Manager. Value-Of-HistoricalActivity.t.Iterator;

A-Fact Blank-Fact;
A_.Fact~l. .16) :~"historical-tuple";
A-Fact(17) 1 ';
A-Fact(18. .42) Historical-.Activity-Record.Project;

A-.Fact(43) 3 ';
A-Fact(44. .63) :=Historical-Activity.Record.Activity-Number;

-- Store the facts --

Environment-.Types .Fact..Buffer-Package. Add-Iten
(A..Fact, Fact-Manager, Fact-Pointer);

Historical..Activity-Manager .Advace.IteratorTo-Next-Historical.Activity;

end loop;
end Retrieve..Historical-Activity-Facts;

-DATE: 12/06/90
-VERSION: 1.0

-NAME: ***PROCEDURE RESTORE HISTORICAL AVTIVITY FACTS***

-MODULE NUMBER: TBD

-- DESCRIPTION: Restores the Historical Activity facts into thce -

-Historical Activity Manager

-- ALGORITHM: A single while loop controls the execution with an -

-embedded call to an 0(i procedure.

-- PASSED VARIABLES: The-Fact.Buffer (contains the Historical -

-- Activity facts)

-- RETURNS: None
-- GLOBAL VARIABLES USED: None

-- GLOBAL VARIABLES CHANGED:. None
-- FILES READ: None

-- FILES WRITTEN: None
-- HARDWARE INPUT: None

-- HARDWARE OUTPUT: None

-- MODULES CALLED: None

-- CALLING MODULES: TBD
-- ORDER-OF: O(i * i) where i is the number of facts in the fact --

-- buffer which should be the same as the no. of Historical Activity --

-- facts.

-- Note that all string slice operations are modeled as 0(1) time. --

-- AUTHOR(S): Min-fuh Shyong
-- HISTORY: None (Initial Implementation)

procedure RestoreHistoricalActivityFacts
(TheFactBuffer: in

EnvironmentTypes.FactBufferPackage.ManagerType) is

-- Local Declaration --

Fact-Pointer : EnvironmentTypes.FactBufferPackage. IteratorType;
A-Fact : EnvironmentTypes.FactStringType;
First-Char : natural : 0;
Char-Position : natural : 0;
TempPos : natural : 0;

-- Historical Activity Declarations --

HistoricalActivityRecord :
HistoricalActivityClass. HistoricalActivityRecordType;

HistoricalActivityPointer:

HistoricalActivityManager.Historical.ActivityPointerType;

-- add new variable --
NullHistoricalActivityRecord

HistoricalActivityClass.HistoricalActivityRecordType;

begin
-- check for empty buffer of facts. If empty, do nothing. --

if EnvironmentTypes.FactBufferPackage. IsEmpty(The_FactBuffer) then
return;

end if;

B-70

-- Initialize iterator to first historical activity facts --

EnvironmentTypes.FactBufferPackage. InitializeIterator

(Fact-Pointer, TheFactBuffer);

-- Engage lop to extract the facts froma a buffer --

-- This loop is O(i) time.

-- Where i is the number of facts in the buffer

while not EnvironmentTypes.FactBufferPackage.IsDone(FactPointer) loop

-- Get a record
A-Fact := EnvironmentTypes.FactBufferPackage.ValueOfItem

(Fact-Pointer) ;

-- Since we put the information in the string, we know the
-- exact columns where information should be.
-- All String assignments are modeled as 0(1);

-- Insure the fields are all blanks

HistoricalActivtyRecord := NullHistoricalActivityRecord;

-- Retrieve the facts

HistoricalActivityRecord.Project := A_Fact(18..42);

HistoricalActivityRecord.ActivityNumber := AFact(44..63);

-- load this fact back into Historical Activity Manager

HistoricalActivityManager.CreateHistoricalActivity

(Historical_ActivityRecord, Historical.Activity_Pointer);

-- Advance pointer --
EnvironmentTypes.FactBufferPackage.GetNext(FactPointer);

end loop;

end RestoreHistoricalActivityFacts;

-- DATE: 12/0J/90
-- VERSION: 1.0

-- NAME: *** RETRIEVE CALLS RELATION FACTS *** --

-- MODULE NUMBER: TBD

-- DESCRIPTION:

-- When the flag TypeOfFactsFlag is set to true,it means the --

-- client procedure wants all the facts that are necessary for --

-- the .esm file. if the flag is false, then the facts for --

-- the expert system are returned. Facts of the same type have --

-- the same format no matter where they are destined. In this --

13-71

-- case, the calls name is but a single fact. --

-- calls relation tuple facts: (calls-relation-tuple Activity --

History-tuple) --

-- where history is another tuple in Historical -Activity --

-- ALGORITHM: All simple 0(1) statements and 2 0(0) procedure calls. --

-- PASSED VARIABLES: TypeFactsFlag, Fact-Manager --

-- RETURNS: None

-- GLOBAL VARIABLES USED: None
-- GLOBAL VARIABLES CHANGED: None

-- FILES READ : None
-- FILES WRITTEN: None
-- HARDWARE INPUT: None

-- HARDWARE OUTPUT: None
-- MODULES CALLED : None
-- CALLING MODULES: TBD
-- ORDER-OF: 0(0)
-- AUTHOR(S): Min-fuh Shyong

-- HISTORY: None (Initial Implementation)

procedure RetrieveCallsRelationFacts
(TypeFactsFlag : in boolean;
Fact-Manager : in out
EnvironmentTypes.FactBuffer-Package.ManagerType) is

-- local declaration --

Fact-Pointer : Environment-Types.FactBufferPackage. IteratorType;
A-Fact : EnvironmentTypes.FactStringType;
Blank-Fact : EnvironmentTypes.Fact-StringType := (others => '

-- calls related declarations --

CallsRelation-Record : CallsRelationClass.Calls-Relation-Record-Type;

Calls-RelationPointer : Calls-RelationManager. CallsRelationPointerType;

begin

-- clear the buffer --

EnvironmentTypes.Fact-BufferPackage.Clear(Fact.Manager);

-- reset --

CallsRelation-Manager. ResetCallj-RelationTupleIterator;

-- teke facts --

while not CallsRelationManager.CallsRelationTupleIterator-done loop

CallsRelationRecord :

B-72

CallsRelationManager.ValueOfCallsRelationTupleAt-Iterator;

A-Fact : Blank-Fact;
AFact(1..20) : "calls-relation-tuple";
A-Fact(21) :) 1 ;

AFact(22..46) := CallsRelationRecord.Activity;

AFact(47) :' ;
A_Fact(48..72) := CallsRelationRecord.HistoryTuple.Project;

-- with one more . extension to get the
-- nested record HistoryTuple.Project

AFact(73) :=) ;

AFact(74..93) CallsRelationRecord.HistoryTuple.ActivityNumb~r;

EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, FactPointer);

CallsRelationManager.AdvanceIteratorToNextCallsRelationTuple;

end loop;

end RetrieveCallsRelationFacts;

-- DATE: 12/06/90
-- VERSION: 1.0
-- NAME: ***PROCEDURE RESTORE CALLS RELATION FACTS*** --

-- MODULE NUMBER: 7BD

-- DESCRIPTION: This procedure accepts a buffer of calls relation --

-- facts.

-- Restores that information into the calls relation manager. --

-- Of special note is that the procedure assumes the facts are in the --

-- same order in which they were stored.
-- ALGORITHM: A single while loop controls the execution with an --

-- embedded call to an O(i) procedure.

-- PASSED VARIABLES: TheFactBuffer (contains the facts) --

-- RETURNS: None

-- GLOBAL VARIABLES USED: None
-- GLOBAL VARIABLES CHANGED: None

-- FILES READ: None

-- FILES WRITTEN: None
-- HARDWARE INPUT: None
-- HARDWARE OUTPUT: None
-- MODULES CALLED: None
-- CALLING MODULES: EssentialIO.RestoreProject --

-- ORDER-OF: order of is O(a * max (x. a)) where a is the --

-- number of calls, x is the number of lines in a historical activity --

-- Note that all string slice operations are modeled as O(W) time. --

-- AUTHOR(S): Min-fuh Shyong

-- HISTORY: None (Initial Implementation)

11-73

procedure Restore-Calls..Relation.Facts
CThe-.Fact-.Buffer :in
Environ~ment-Types.Fact-.Buffer..Package.Haiiager..Type) is

-- Local Declarations --

Fact-.Pointer: Environent-.Types.Fact-.Buffer-.Package. Iterator-Type;
A-.Fact: Environment-Types.Fact-.String-.Type;

First-Char: natural:= 0;
Char-.Position: natural:= 0;
Temp-.Pos: natural:= 0;
More-Descriptions.Flag: boolean;

-- Calls Relation Related Declarations --

Calls-Relation-Record: Calls-.Relation-Class .Calls.Relation-.Record-Type;
Calls-.Relation-Yointer: Calls-.Relation-Manager.Calls-Relaton-Pointer-.Type;

Null-Calls-Relat ion-Record: Call s-.RelationClass .Calls-Relat ion-Record.rype;

--The-.Iterator: Environment-.Types .Text-Buffer-Package .Iterator3ype;

--A..Descript ion-Line: Environent-.Types .DD-.Text..Type;
-- A-.Child: Envirornment..jypes .DDField-Type;
--Found-Flag: boolean:= False;
--Result-Flag: boolean;

-Exception --

-This exception is declared here because the Essential 10 package does
-not check to see the facts are in any specific order.

-- Invalid-FactSequence-For-als.Relation: exception;
-- Activity.Hierarchy-Error.During..Restore: exception;

begin
-- Check for empty buffer of facts. If empty, do nothing.
if Environment-Types .Fact-.Buffer-.Package. Is-Empty(TheFactBuffer) then

return;
end if;

-- Initialize iterator to first tuple fact

Environment-Types .Fact-Buffer-Package. Initialize-Iterator
(Fact-Pointer, The-Fact-Buffer);

-Engage loop to extract the cassl relation facts from a buffer
-one at a time

while not Environment-Types .Fact-.Buffer-.Package.IsDone(Fact_.Pointer) loop
-- Get a record.

B3-74

AFact:= EnvironmentTypes.FactBufferPackage.ValueOfItem
(Fact-Pointer);

CallsRelationRecord := NullCallsRelationRecord;

CallsReltionRecord.Activity := AFact(22..46);

CallsRelationRecord.HistoryTuple.Project := AFact(48..72);

CallsRelationRecord.HistoryTuple.ActivityNumber := AFact(74..93);

CallsRelationManager.CreateCallsRelationTuple
(CallsRelationRecord, CallsRelationPointer) ;

EnvironmentTypes.FactBufferPackage.Get_Next(FactPointer);

end loop;
end RestoreCallsRelationFacts;

-- DATE: 12/03/90
-- VERSION: 1.0

-- NAME: *** RETRIEVE CONSISTS OF RELATION *** --

-- MODULE NUMBER: TBD

-- DESCRIPTION:

-- When the flag TypeOfFactsFlag is set to true,it means the --

-- client procedure wants all the facts that are necessary for --

-- the .esm file. If the flag is false, then the facts for --

-- the expert system are returned. Facts of the sam, type have --

-- the same format no matter where they are destined. In this --

-- case, the historical name is but a single fact. Future --

-- modifications to SAtool II could include more information in --

-- the HistoricalActivityManager however, thus this procedure --

-- is of use.

-- consists of relation facts: (retrieved when creating a .esm file --

-- or when performing check sysntax

-- 1) a predefined attribute name (consists-of-name) --

-- 2) the consists of name (if the name is null, the word 'null' is --
-- placed in the field.

-- ALGORITHM: All simple 0(1) statements and 2 0(1) procedure calls. --

-- PASSED VARIABLES: TypeFactsFlag, Fact-Manager --

-- RETURNS: None

-- GLOBAL VARIABLES USED: None

-- GLOBAL VARIABLES CHANGED: None

-- FILES READ: None

-- FTLES WRITTEN- None

-- HARDWARE INPUT: None

-- HARDWARE OUTPUT: None

-- MODULES CALLED: None

-- CALLING MODULES: TBD

-- ORDER-OF: 0(1)

13-75

-AUTHOR(S): Min-fuh Shyong
-HISTORY: None (Initial Implementation)

procedure Retrieve-ConsistsOf-Relation-Facts
Crype-.Facts-.Flag in boolean;
Fact-Maniager :in out
Environment-Types .Fact-.BufferPackage.anager-Type) is

-- local declaration --

Fact-PYointer :Environxent-Types .Fact-.Buffer-.Package. Iterator-.Type;
A-.Fact :Environment-Types .Fact-.String-Type;

Blank-.Fact : Environment-Types .Fact-String-Type := (others =>

-- consists of declarations --

Consists-.O-Relation-Record:
Consists-0f-Relation-Class .Consists-Of-RelationRecordType;

Consists..Of-.Relation-Pointer:
Cons ists-0f-.Relation..Yanager. Consists-.Of-.RelationPointer-Type;

begin

__ Clear the passed in fact-.manager --

Env ironisent -ypes . Fact-Buf fer-Package. Clear (Fact-Manager);

-- Reset --

Consists-.O-Relation-Manager .Reset-.Cunsists-OfRelation-Tuple.lterator;

-- take facts --

while not Consists-Of-.Relation-Manager.
Consists.ORelation-uple-.Iterator-Done loop

Consists.Of-RelationRecord:=
Consists.0f..Relation-.Manager.
Value-.Of-.Consists-Of-Relation-Tuple-At-Iterator;

A-Fact Blank..act;
A..Yact(1. .16) "consists-of-name';
A..Yact(17)
A-Fact(18. .23)

Padded-String(integer'image(Consists-0f.Relation-Record.Consists-Df-Id), 6);
A..Fact(24) :'

A-Fact(25. .49) :~Consists-OfReiation-Record.Parent;

B3-76

AFact(i. .75) := ConsistsOfRelationRecord.Child;

EnvironmentTypes.FactBufferPackage.AddItem

(AFact, Fact-Manager, Fact-Pointer);

ConsistsOfRelationManager.
AdvanceIteratorToNextConsistsOfRelationTuple;

end loop;

end RetrieveConsistsOfRelationFacts;

-- DATE: 12/06/90
-- VERSION: 1.0

-- NAME: ***PROCEDURE RESTORE CONSISTS OF RELATION FACTS*** --

-- MODULE NUMBER: TBD
-- DESCRIPTION: Restores the consists of relation facts into the --

-- Consists Of Relation Manager
-- ALGORITHM: A single while loop controls the execution with an --

-- embedded call to an O(i) procedure.
-- PASSED VARIABLES: TheFactBuffer (contains the consists of --

-- relation facts)
-- RETURNS: None
-- GLOBAL VARIABLES USED: None
-- GLOBAL VARIABLES CHANGED: None

-- FILES READ: None

-- FILES WRITTEN: None
-- HARDWARE INPUT: None
-- HARDWARE OUTPUT: None
-- MODULES CALLED: None
-- CALLING MODULES: TBD

-- ORDER-OF: O(i * i) where i is the number of facts in the fact --

-- buffer which should be the same as the no. of Consists of relation --

-- facts.
-- Note that all string slice operations are modeled as 0() time. --

-- AUTHOR(S): Min-fuh Shyong
-- HISTORY: None (Initial Implementation)

procedure RestoreConsistsOfRelation-Facts
(The FactBuffer: in
EnvironmentTypes.FactBufferPackage.ManagerType) is

-- Local Declaration --

Fact-Pointer : EnvironmentTypes.FactBufferPackage. IteratorType;
AFact : EnviroimentTypes.FactStringType;

First-Char natural := 0;

B-77

Char-Position natural 0;
TempPos natural 0;

-- Consists Of Relation Declarations --

ConsistsOfRelationRecord :
ConsistsOfRelationClass.ConsistsOfRelationRecordType;

ConsistsOfRelationPointer:
ConsistsOfRelationManager.ConsistsOfRelationPointerType;

-- add new variable --

NullConsistsOfRelation-Record
ConsistsOfRelationClass.ConsistsOfRelationRecordType;

begin
-- check for empty buffer of facts. If empty, do nothing. --

if EnvironmentTypes.FactBufferPackage.IsEmpty(TheFactBuffer) then
return;

end if;

-- Initialize iterator to first consists of relation facts --

EnvironmentTypes.FactBufferPackage.InitializeIterator
(Fact-Pointer, TheFactBuffer);

-- Engage lop to extract the facts froma a buffer --

-- This loop is O(i) time.
-- Where i is the number of facts in the buffer

while not EnvironmentTypes. FactBufferPackage. IsDone(FactPointer) loop

-- Get a record
A-Fact := Environment-Types.FactBufferPackage.ValueOfItem

(Fact-Pointer) ;

-- Since we put the information in the string, we know the
-- exact columns where information should be.
-- All String assignments are modeled as 0(1);

-- Insure the fields are all blanks

ConsistsOfRelationRecord := NullConsistsOfRelationRecord;

-- Retrieve the facts

ConsistsOfRelationRecord.ConsistsOfId
integer'value(AFact(18..23));

Consists-OfRelationRecord.Parent := AFact(25..49);

B-78

Consists-.Of-.Relation.Record.Child := A-Fact(Bi. .75);

-- load this fact back into Consists Of Relation Manager

Cons ists..Of-Relation..Manager. Create.Consists-Of-Relation-Tuple
(Consists-.O-Relation-Record, Consists-OfRelation-Pointer);

-- Advance pointer --

Environment-.Types .Fact-.BufferPackage.GetNext(FactPointer);

end loop;
end Restore-.Consists.ORelation.Facts;

end Essential-.Fact-.Utilities;

13-7 9

Appendix C. CLIPS RULE BASE

Essential Subsystem Rule Base

;; File Name: satool2.clp

;; Date Last Updated: 24 May 1991

;; Author: Min-fuh Shyong, GCS-91j

Points of Contact: Dr. Gary Lamont
DESCRIPTION:

This file contains the rule base used by
the CLIPS/Ada expert system portion of the Essential ;,
Subsystem. The idea was initiated by Terry Kitchen in
his thesis but needs to be expanded and completed for the ;;
follow on researchers. This subsystem is to eventually be ;;
integrated with another system to form SAtool II, which
with another system to form SAtool II, which is an Ada
is an Ada based IDEFO development tool.
PURPOSE:

The purpose of this rule base is to check the
syntactic features of an IDEFO model whose representation ;;

; has been converted to CLIPS readable facts.
METHODOLOGY:

Whenever the "check syntax" option is chosen within
the Essential Subsystem main menu, this rule base is loaded;;
into the working memory of the CLIPS/Ada expert system.

;; The same option also begins the "recognize-act" cycle of
the CLIPS inference engine which uses the rules below to
"match" the LHS of rules with facts, resolve conflicts
among eligible rules, and then fire the RHS of rules, until;;
no rules are eligible to fire. This file must be within
SCOPE:

At the present time, this rule base checks the
syntactical features associated with the "essential" data ;;

;;of an IDEFO model.

RULES AND THEIR FUNCTION:
The following IDEFO syntax checking rules are completed: ;;

1. Each activity is checked to ensure it has at least one ;;

output and one control.
2. For each activity, the number of its input, output,

control and mechanisms is checked to suggest that they ;;

are not more than S.

3. The project is checked to ensure a name is given for
the project.

;; 4. Each activity is checked to ensure an activity number

;; is assigned. No duplicated activity name is also

checked.

6. Each activity is checked to ensure some description

C-I

are associated with that activity.
6. Each data element is checked to make sure that the

data name, description are provided. And no duplicated ;;
;, data element name exists.
;1 7. Each parent activity with a child name with it, the
;1 child's name must be found.

8, Hierarchical rules for creating boundary arrow facts ;;
between any parent with 2, 3, 4, 5, or 6 child

;; activities are implemented,
9. Rules for checking the consistency between those parent ;;

diagram and their child diagrams are provided,
;;010 Rule for checking inconsistent icom code between parent ;;
;1, and child diagrams.
;;II. Rule to check if any parent activity has more than 6 ;;
;; child diagrams,
;;12, Utility rules builds up the syntax checking ;

environment.
;;13. Boundary icom number consistancy checking rules.
;;14. Auxiliary rules supporting the hierarchy checking rules.;;

OUTPUT:
IDEFO syntax violations cause the user to receive ;1

five kinds of messages:
1. CONGRATULATORY: No syntax errors was found. If no ;1

syntax error facts was asserted after the ;;
rules checking is done, then this message ;;
will be presented at the end of all the ,;

other messages,
2. ERRORS: Syntax error encountered, syntax error

fact will be asserted, program will be
halted after all the checkings are done.

3. WARNING: Some features of the users project work
were discovered that might cause problem. ;;

4. NOTICE: Reminder to the user that something should ;;
be carefully done.

S. SUGGESTION: Suggest the user that further manually ;;
recheck might be helpful to find
logical errors that cannot be found by
the syntax checking rules.

;********************** Environment Utility rule ************************

These rules does not do the syntax checking functions, but are necessary
for the syntax checking package.

-----------------P P P P * -- ---------------- ------------------ -----------------

This ±Llle prints out the necessary headings for the syntax checking
functions. 't is guaranteed by the salience declaration to be fired first.

C-2

(defrule print-introduction
(declare (salience 5000))
(initial-fact)

(printout t crlf "***** Essential Subsystem Syntax Checking Messages ****"

crlf)
)

Right following the heading, the name of the project to be checked is
; print our by this rule.

(defrule print-project-name
(declare (salience 4999))
(project-name ?name)

(printout t "===> The project == "?name " == is checked as follows:" crlf crlf)
)

;;;9

;If any errors have occured, this rule will stop the system at this point.

(defrule exit-if-error
(declare (salience -8))
(syntax-error-occurred)

(halt)
)

9999..,.9,9999.99.,99999.9,999,99°,,.,9o.o,.,,,999,99,,99,9.°.,.,,

If no errors were found, then a congratulatory message will be presented,
but also reminds the usez to check his work again.

(defrule no-error-congratulate
(declare (salience -8))
(not (syntax-error-occurred))

(printout t "CONGRATULATIONS: No syntax errors encountered." crlf)
(printout t " SUGGESTION: Please recheck logical structure of your project " crlf)
(printout t " for perfection" crlf
)

S*************************** rules for icom-facts ***************************

Those rules check possible errors that could happen in icom facts

9Pg9999999 999999 99999999 999 f9~ 99999 999999999999, 9999999 99999999999999999

C:-3

If an activity has no output, no control, than it is an syntax error.

(defrule zero-outputs
(icom-activity-outputs ?act 0)

(printout t "ERROR: Activity " ?act " needs at least I output."

crlf)
(assert (syntax-error-occurred)))

(defrule zero-controls
(icom-activity-controls ?act 0)

(printout t "ERROR: Activity " ?act " needs at least I control."
crlf)
(assert (syntax-error-occurred))
)

; Checks if the inputs, mechanisms, controls or outputs of an activity

; is more that 5, than a warning message will be presented.

(def-ule too-many-mechs

(icom-activity-mechanisms ?act-mech ?num-mech)

(test (> ?num-mech 5))

(printout t "WARNING: Activity " ?act-mech " has too many

mechanisms." crlf)
)

(defrule too-many-outputs

(icom-activity-outputs ?act-out ?num-out)

(act-numb ?act-out ?out-num)
(test (> ?num-out 5))

(printout t "WARNING: Activity " ?out-num ".".?act-out " has too many

outputs." crlf)
)

(defrule too-many-controls

(icom-activity-controls ?act-cont ?num-cont)

(act-numb ?act-cont ?cont-num)

C-4

(test (> ?num-cont 5))

(printout t "WARNING: Activity " ?cont-num " " ?act-cont " has too many
controls." crlf)

)

(defrule too-many-inputs
(icom-activity-inputs ?act-in ?num-in)
(test (> ?num-in 5))

(printout t "WARNING: Activity " ?act-in " has too many inputs." crlf)
)

;********* ** rules for project-facts * * *
The only rule for a project is to check if there is a project name.

(defrule null-project-nae
(declare (salience 8))
(project-name null)

(printout t "ERROR: The current project does not have a name."
crlf)
(assert (syntax-error-occurred))

)

Those rules check if the necessary attributes of an activity is missing

Any activity should have an activity number assigned to it.

(defrule null-activity-number
(act-numb ?activity null)

(printout t "ERROR: Activity " ?activity " must be numbered."
crlf)
(assert (syntax-error-occurred)))

Each avtivity should have a description, if not,
this rule will raise a warning.

C-5

(defrule null-activity-description
(act-desc ?activity null)
(act-numb ?activity ?num)

(printout t "WARNING: Activity number " ?num " " ?activity " needs a

description." crlf))

; If any activity has a activity number with the last digit more than
; 6, than that means its parent has more than 6 child activities.

(defrule too-many-children-levell

(act ?act ?end-num)
(test (> ?end-num 6))

(printout t "Waring: activity AO has more than 6 child diagrams." crlf)
(printout t "Notice: Please manually check to make sure that there is no" crlf)

(printout t " such an warning lower that 4 levels of hierarchy." crlf)
)

(defrule too-many-children-level2
(act ?act ?num ?end-num)
(test (> ?end-num 6))

(printout t "Waring: activity A"?num " has more than 6 child diagrams." crlf)
(printout t "Notice., Please manually check to make sure that there is no" crlf)
(printout t " such an warning lower that 4 levels of hierarchy." crlf)
)

(defrule too-many-children-level3
(act ?act ?nl ?n2 ?end-num)
(test (> ?end-num 6))

(printout t "Waring. activity A"?nl ?n2 " has more than 6 child diagrams." crlf)
(printout t "Notice: Please manually check to make sure that there is no" crlf)
(printout t " such an warning lower that 4 levels of hierarchy." crlf)
)

******* rules for hierarchical boundary consistency checks ******

The boundary data element name and icom code of a parent activity
must be consistent with its child diagrams. Those rules create a
set of boundary facts to be checked for their consistency.

The assumption made here is that any parent activity should not have
more than six child diagrams. So the rules are implemented
to create boundary facts for parent activity with 2, 3, 4, 5, and 6
child diagrams separately.

Another set of rules will be used to check the created boundary facts

for activities with different or same number of child activities.

C-6

These rules create boundary facts for a parent activity with
two child diagrams. The first level rule creates those initial
boundary facts, the second level rules clear the data in child
diagrams that are not boundary ; data in contrast with their
brother diagrams.

(defrule parent-2child
(declare (salience 100))

?fl<-(act-has-child ?parent2 ?childlk'null)
?f2<-(act-has-child ?parent2 ?child2&'?childl&'null)
(not (act-has-child ?parent2

?child3&-?child2k'?childl&'null))

(retract ?f1 ?f2)
(assert (parent2 ?parent2 ?childl ?child2))

)

(defrule parent2-boundary
(parent2 ?parent2 ?childl ?child2)
(icom-tuple ?parent2 ?p-data ?p-rel ?)

(assert (parent2-boundary ?parent2 ?p data ?p-rel))
)

(defrule child2-boundary-childi
(parent2 ?parent2 ?childl ?child2)
(icom-tuple ?childl ?cl-data ?cl-rel ?)

(assert (child2-boundary ?parent2 ?childl ?cl-data ?cl-rel))
)

(def?.ule child2-boundary-child2
(parent2 ?parent2 ?childl ?child2)
(icom-tuple ?child2 ?c2-data ?c2-rel ?)

(assert (child2-boundary ?parent2 ?child2 ?c2-data ?c2-rel))
)

The (child2-boundary) facts created by the previous rule
are only initial boundary facts, which means they still
have all the data element in the facts. But the data shared by any two
different child activities with different icom code will not be boundary

C-7

arrows for the child activities.
They should be retracted from the

facts already created before the boundary checking actually performs.
And they must be executed after all the initial boundary facts are
already created. This is guaranteed by a higher salience declaration in
the previous rule.

(defrule clear-2child-mid
?fl<-(child2-boundary ?parent2 ?child1 ?cl-data ?cl-rel)
?f2<-(child2-boundary ?parent2 ?child2k&?childl ?cl-data ?c2-rel&-?cl-rel)

(retract ?fM)
(retract ?f2))

This rule erase one of the duplicated boundary arrow
for the icom number check.

(defrule remove-2child-2boundary
?f1<- (child2-boundary ?parent2 ?childl ?cl-data ?ci-rel)

(child2-boundary ?parent2 ?child2&'?child! ?cl-data ?cl-rel)

(retract ?f1)
)

If an intermediate data consists subcomponents, it should be
retracted as well.

(defrule rid-2child-2consists
?fl<-(child2-boundary ?parent2 ?childl ?cl-data ?cl-rel)
?f2<-(child2-boundary ?parent2 ?childl ?c2-data&-?cl-data ?c2-rel&'?cl-rel)
?f3<-(child2-boundary ?parent2 ?child-p&-?childl ?cp-data&'?cl-data&-?c2-data

?cp-rel& ?cl-rel& ?c2-rel)
(consists-of-name ? ?cp-data ?c2-data)
(consists-of-name ? ?cp-data ?cl-data)

(retract ?f1 ?f2 ?f3)
)

For those parent activity with two child diagrams,
if a parent boundary data can't be found in the child boundary data
or the parent data is not a parent-data of the child data,
than parent inconsistency occurred.

C-8

(defrule check-2child-parent
(declare (salience -5))
(parent2-boundary ?p-name ?p-data ?p-rel)
(not (consists-of-name ? ?p-data ?c-data))
(not (child2-boundary ?p-name ?childlor2 ?p-data ?c-rel))

(printout t "ERROR: Data inconsistency between parent activity" crlf)
(printout t " " ?p-nara " data "' ?p-rel "' " ?p-data " and its" crlf)
(printout t " child diagrams." crlf)

(assert (syntax-error-occurred)))

(defrule check-2child-parent-consists
(declare (salience -6))
(parent2-boundary ?p-name ?p-data ?p-rel)
(consists-of-name ? ?p-data ?c-data)
(not (child2-boundary ?p-name ?child2 ?c-data ?c2-rel))

(printout t "ERROR: Data inconsistency between parent activity
"?p-name " data '" ?p-rel "' " ?p-data " and its child

diagrams." crlf)
(assert (syntax-error-occurred))
)

If a parent finds a child with same data but different
relation, then it is an icom inconsistency.

(defrule check-2child-parent-icom
(declare (salience -5))
(parent2-boundary ?p-name ?p-data ?p-rel)
(child2-boundary ?p-name ?childl ?p-data ?c-rel)
(test (neq ?p-rel ?c-rel))

(printout t "ERROR: icom inconsistency between activity " crlf)
(printout t " " ?p-name " and its child diagram " ?childl "." crlf)

(assert (syntax-error-occurred))
)

This rule checks if a data in child is not in their parent
than child inconsistency with its parent occurred.

C-9

(defrule check-2child-child
(declare (salience -5))
(child2-boundary ?p-name ?childl ?ci-data ?ci-rel)
(not (consists-of-name ? ?p-data ?c-data))
(not (parent2-boundary ?p-name ?ci-data ?p-rel))

(printout t "ERROR: Data inconsistency between child
activity " ?childl " data '" ?cl-rel "' " ?cl-data
" and its parent." crlf)
(assert (syntax-error-occurred)))

Boundary icom number rules

Those hierarchical rules will create a set of facts calculating
and accumulating the control, output, input, and mechanisms numbers
for each parent activity and their child activities boundary icom facts.

Note that these rules are dependants of those used to create toundary
facts for each pair of parent and child activities. So their salience must
be lower to be fired later after those boundary facts have already
been created.

Parent with 2 child diagrams

The initial icom number will be build up by these rules;

(defrule parent2-icom-c
(declare (salience -2))
(parent2-boundary ?p2-name ?ci ?c2 ?p2-data c)

(assert (parent2-icom ?p2-name ?p2-data control 1))
)

(defrule parent2-icom-o
(declare (salience -2))
(parent2-boundary ?p2-name ?ci ?c2 ?p2-data o)

(assert (parent2-icom ?p2-name ?p2-data output 1))
)

(defrule parent2-icom-i
(declare (salience -2))
(parent2-boundary ?p2-name ?cl ?c2 ?p2-data i)

(assert (parent2-icom ?p2-name ?p2-data input 1))
)

C-IO

(def rule parent2-icom-m
(declare (salience -2))
(parent2-boundary ?p2-name ?cI ?c2 ?p2-data m)

(assert (parent2-icom ?p2-name ?p2-data mech 1))

;As the icom facts are created, these rules will add up
;the total number of icom for each activity.

(defrule parent2-control-add
(declare (salience -3))
?fl<-(Parent2-icom ?p2-nante ?datal control ?one)
?f 2<- (parent2-icom ?p2-name ?data2 control ?n)
(test (neq ?datai ?data2))

(retract ?fI Mf)
(bind ?total (+ ?one ?n))
(assert (parent2-icom ?p2-name =(gensym) control ?total))

-- - - - - - - - - - - -- - - - - - - - - - - -

(defrule parent2-output-add
(declare (salience -3))
?fl<-(parent2-icom ?p2-name ?datai output ?one)
?f2<-(parent2-icom ?p2-name ?data2 output ?n)
(test (neq ?datal ?data2))

(retract Mf 1M)
(bind ?total (+ ?one ?n)
(assert (parent2-icom ?p2-nane =(gensym) output ?total))

-- - - - - - - - - - - -- - - - - - - - - - - -

(def rule parent2-input-add
(declare (salience -3))
?fl<-(parent2-icom ?p2-name ?datal input ?one)
?f2<-(parent2-icom ?p2-name ?data2 input ?n)
(test (neq ?datal ?data2))

(retract Mf 1M)
(bind ?total (+ ?one Wn)
(assert (parant2-icom ?p2-naie =(gensym) input ?total))

Cdefrule parent2-mech-add
(declare (salience -3))
?il<-(parent2-icom ?p2-name ?datal mech ?one)
?f2<-(parent2-icom ?p2-naue ?data2 mech ?n)
(test (neq ?datal ?data2))

(retract ?fI 1M1)
(bind ?total (+ ?one ?n))
(assert (parent2-icom ?p2-nane =(gensym) mech ?total))

(defrule child2-icom-c
(declare (salience -2))
(child2-boundary ?c2-parent ?c2-name ?c2-data c)

(assert (child2-icom ?c2-parent ?c2-data control 1))

(defrule child2-icom-o
(declare (salience -2))
(child2-boundary ?c2-parent ?c2-name ?c2-data o)

(assert (child2-icom ?c2-parent ?c2-data output 1)

(del rule child2-icom-i
(declare (salience -2))
(child2-boundary ?c2-parent ?c2-name ?c2-data i)

(assert (child2-icom ?c2-parent ?c2-data input 1))

(defrule child2-icom-m
(declare (salience -2))
(child2-boundary ?c2-parent ?c2-nane ?c2-data m)

(assert (child2-icom ?c2-parent ?c2-data inech 1))

-- - - - - - - - - - - - - - -- -- - - -

(del rule child2-control-add
(declare (salience -3))
?fl<-(child2-icont ?c2-parent ?datal control ?one)
?f2<-(child2-icom ?c2-parent ?data2 control ?n)
(test (neq ?datal ?data2))

C- 12

(retract Mf 1M)
(bind ?total (+ ?one ?n))
(assert (child2-icom ?c2-parent =(gensym) control ?total))

-- -- - - - - - - - - - - - - -

(def rule child2-output-add
(declare (salience -3))
?fl<-(child2-icom ?c2-parent ?datai output ?one)
?f2<-(child2-icom ?c2-parent ?data2 output ?n)
(test (neq ?datal ?data2))

(retract Mf 1M)
(bind ?total (+ ?one ?n))
(assert (child2-icom ?c2-parent =(gensym) output ?total))

-- - - - - - - - - - - - - - - -

(def rule child2-input-add
(declare (salience -3))
?fl<-(child2-icom ?c2-parent ?datal input ?one)
?f2<-(child2-icom ?c2-parent ?data2 input ?n)
(test (neq ?datal ?data2))

(retract Mf 1M)
(bind ?total (+ ?one ?n))
(assert (child2-icom ?c2-parent =(gensym) input ?total))

-- - - - - - - - - - - - - - -

(defrule child2-mech-add
(declare (salience -3))
?fI<-(child2-icom ?c2-parent ?datal mech ?one)
?f2<-(child2-icom ?c2-parent ?data2 mech ?n)
(test (neq ?datal ?data2))

(retract ?fI Mf)
(bind ?total (+ ?one ?n))
(assert (child2-icom ?c2-parent =(gensym) mech ?total))

Check Parent with 2 child boundary icom number consistancy.
if the number of boundary icom for a parent activity is not the same
with its child activities. A warning gill be raised.

--------------- ------------* -i -------------------

(defrule check-parent-2child-control

(declare (salience -6))

?fl<-(parent2-icom ?p2-name ? control ?p)
?f2<-(child2-icom ?p2-name ? control ?c)

(test (!= ?p ?c))

(retract ?M ?fM2)
(if (> ?p ?c)
then

(bind ?pd (- ?p ?c))

(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)

(printout t " of parent activity "?p2-name" is "?pd" control(s) more than " crlf)

(printout t " its child activities." crlf)
(printout t " Are there "consists of" data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

else
(bind ?cd (- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)
(printout t " of the parent activity "?p2-name" is "?cd" control(s) less " crlf)
(printout t " than its child boundary controls." crlf)
(printout t " Are there ''consists of'' data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

(defrule check-parent-2child-output
(declare (salience -6))
?fl<-(parent2-icom ?p2-name ? output ?p)
?f2<-(child2-icom ?p2-name ? output ?c)
(test (!= ?p ?c))

(retract ?f1 ?f2)
(if (> ?p ?c)
then
(bind ?pd (- ?p ?c))
(printout t "WARNING, there might be an ERROR: The number of boundary outputs" crlf)
(printout t " of parent activity " ?p2-name " is " ?pd " output(s) more " crlf)

(printout t " than its child activities." crlf)
(printout t " Are there "consists of" data items at boundary?" crlf)
(printout t " Please recheck the syntpx." crlf)

else

(bind ?cd (- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary outputs" crlf)
(printout t " of the parent activity " ?p2-name " is " ?cd " output(s) less " crlf)
(printout t " than its child boundary outputs." crlf)
(printout t " Are there ''consists of'' data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

C-14

(defrule check-parent-2child-input
(declare (salience -6))
?fl<-(parent2-icom ?p2-name ? input ?p)
?f2<-(child2-icom ?p2-name ? input ?c)
(test (!= ?p ?c))

(retract ?f1 ?f2)
(if (> ?p ?c)
then

(bind ?pd (- ?p ?c))
(printout t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)
(printout t " of parent activity " ?p2-name " is " ?pd " input(s) more " crlf)
(printout t " than its child activities." crlf)
(printout t " Are there "consists of" data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)
else
(bind ?cd (- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)
(printout t " of the parent activity " ?p2-name " is " ?cd " input(s) less " crlf)
(printout t " than its child boundary inputs." crlf)
(printout t " Are there "consists of'' data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

(defrule check-parent-2child-mech
(declare (salience -6))
?fl<-(parent2-icom ?p2-name ? mech ?p)
?f2<-(child2-icom ?p2-name ? mech ?c)
(test (!= ?p ?c))

(retract ?f1 ?f2)
(if (> ?p ?c)
then
(bind ?pd (- ?p ?c))
(printout t "WARNING, there might be an ERROR: The number of boundary ntechanisms" crlf)
(printout t " of parent activity " ?p2-name " is " ?pd " mechanism(s) more " crlf)
(printout t " than its child activities." crlf)
(printout t " Are there ''consists of" eata items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)
else

(bind ?cd (- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary mechanisms" crlf)
(printout t " of the parent activity " ?p2-name " is " ?cd " mechnaism(s) less " crlf)
(printout t " its child child boundary mechanisms." crlf)
(printout t " Are there ''consists of'' data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

C-15

Those rules creating boundary facts for parents with
3 children.

(defrule parent-3child
(declare (salience 100))
?p3f 1<- (act-has-child ?parent3 ?childik-null)
?p3f 2<- (act-has-child ?parent3 ?child2&-?childi&-null)
?p3f 3<- (act-has-child ?parent3 ?child3&-?child2& ?childl&-null)
(not (act-has-child ?parent3

?child4&-?child3&-?child2&-?childlkThull))

(retract ?p3f 1 ?p3f 2 ?p3f 3)
(assert (parent3 ?parent3 ?childi ?child2 ?child3))

(def rule parent3-boundary
(parent3 ?parent3 ?childI ?child2 ?child3)
(icom-tuple ?parent3 ?p-data ?p-rel ?)

(assert (parent3-boundary ?parent3 ?p-data ?p-rel))

(def rule child3-boundary-childi
(parent3 ?parent3 ?childi ?child2 ?child3)
(icom-tuple ?childl ?cl-data ?cl-rel ?)

(assert (child3-boundary ?parent3 ?childl ?cl-data ?cl-rel))

(defrule child3-boundary-child2
(parent3 ?parent3 ?childi ?child2 ?child3)
(icom-tuple ?child2 ?c2-data ?c2-rel ?)

(assert (child3-boundary ?parent3 ?child2 ?c2-data ?c2-rel))

(def rule child3-boundary-child3
(parent3 ?parent3 ?childi ?child2 ?child3)
(icom-tuple ?child3 ?c3-data ?c3-rel ?)

(assert (child3-houndary ?parent3 ?child3 ?c3-data ?c3-rel))

C)1

These 2 rules below will erase the duplicated data element

in the:

(child3-boundary facts)

The only possible data element we want to erase is
any data that is shared by 2 or 3 activities but with different

icom code.

CONDITION:

1. Any two activities are she.ring a data element but

with different icom relations.
2. All three activities are sharing a data element but

with different icom relations.
With the declaration of salience, we may assure that
any data element shared by all 3 child activities will be
erased first.

(defrule clear-3child-3mid

?fl<-(child3-boundary ?parent3 ?childl ?cl-data ?cl-rel)
?f2<-(child3-boundary ?parent3 ?child2&-?childl ?cl-data ?c2-rel&-?cl-rel)
?fS<-(child3-boundary ?parent3 ?child3&-?child2&-?childi

?cl-data ?c3-rel&k?c2-rel&-?cl-rel)

(retract ?f1)
(retract ?M2)
(retract ?f3)
)

If a intermediate arrow is the input of one box but also the
output and input of another two boxes. It must be removed before
the arrow between the other boxes been removed.

(defrule clear-3child-2mid-1

(child3-boundary ?paernt3 ?childl ?cl-data ?ci-rel)
(child3-boundary ?parent3 ?child2&-?childl ?cl-data ?c2-rel&'?cl-rel)

?fl<- (child3-boundary ?parent3 ?child3&?child2&'?childl ?cl-data ?c3-rel)

(test (or (eq ?c3-rel ?c2-rel)

(eq ?c3-rel ?cl-rel)))

(retract ?f1)
)

(defrule clear-3child-2mid

(declare (salience -1))
?fl<-(child3-boundary ?parent3 ?childl ?cl-data ?cl-rel)

?f2<-(child3-boundary ?parent3 ?child2&-?childl ?cl-data ?c2-rel&-Tcl-rel)

C-17

(retract ?f 1)
(retract ?f 2)

Remove the duplicated boundary arrows.

(def rule remove-3child-3boundary
(child3-boundary ?parent3 ?childi ?cl-data ?cI-rel)

?f 2<- (child3-boundary ?parent3 ?child2&?childi ?ci-data ?ci-rel)
?f 3<- (child3-boundary ?parent3 ?child3k'?child2&-?childi ?cI-data ?cl-rel)

(retract Mf 2M)

(def rule remove-3child-2boundary
(child3-boundary ?parent3 ?childi ?cl-data ?cl-rel)
?f2<-(child3-boundary ?parent3 ?child2&-?childl ?ci-data ?cl-rel)

(retract ?f 2)

-- -

(defrule rid-3child-2consists
?fl<-(child3-boundary ?parent3 ?childi ?cl-data ?cl-rel)
?f2<-(child3-boundary ?parent3 ?child2&-?childl ?c -data&-?cl-data ?c2-rel)

?f<-(child3-boundary ?parent3 ?child-p&-?childi&-?child2
?cp-data&-?c2-data&'?cl-data ?cp-reJ.*?cl-rdl&-?c2-rel)

(consists-of-name ? ?cp-data ?c2-data)
(consists-of-name ? ?cp-data ?cl-data)

(retract ?fI M f ?f 3)

This rule check a parent with 3 child diagrams to see if the
parent boundary data are also a part of it child's boundary
*data.

(defrule check-3child-parent
(declare (salience -5))
(parent3-boundary ?p-name ?p-data ?p-rel)

C- 18

(not (consists-of-name ? ?p-data ?c-data))
(not (child3-boundary ?p-name ?child3 ?p-data ?c3-rel))

(printout t "ERROR: Data inconsistency between parent activity

"?p-name " data "' ?p-rel "' " ?p-data " and its child

diagrams." crlf)
(assert (syntax-error-occurred))
)

(defrule check-3child-parent-consists
(declare (salience -6))
(parent3-boundary ?p-name ?p-data ?p-rel)
(consists-of-name ? ?p-data ?c-data)
(not (child3-boundary ?p-name ?child3 ?c-data ?c3-iel))

(printout t "ERROR: Data inconsistency between parent activity
"?p-name " data '" ?p-rel "' " ?p-data " and its child

diagrams." crlf)
(assert (syntax-error-occurred))
)

This rule check if a parent with 3 rhild diagram aat
some of them have the same boundary data element but
with different icom relation.
Then it is an icom ERROR.

(defrule check-3child-icom

(declare k.alience -5))
(parent3-boundary ?p-name ?p-data ?p-rel)
(child3-boundary ?p-name ?c-name ?p-data ?c-rel)
(test (neq ?p-rel ?c-rel))

(printout t "ERROR: icom inconsistency between activity " crlf)

(printout t " "?p-name " and its child diagram " ?c-name"." ;rlf)

(assert (syntax-error-occur-ed))
)

This rule checks if a child has some boundary data element
but can't find the same data in its parent then inconsistency

happened.

::: ::: ::: ::: ::: :: ::: ::: ::: ::: ::: :: ::: :::c:-:i::9

(defrule check-3child-child
(declare (salience -6))
(child3-boundary ?p-name ?c-name ?c-data ?c-rel)
(not (consists-of-name ? ?p-data ?c-data))
(not (parent3-boundary ?p-name ?c-data ?p-rel))

(printout t "ERROR: Data inconsistency between child activity
" ?c-name " data "' ?c-rel "' " ?c-data " and its
parent." crlf)

(assert (syntax-error-occurred))
)

Parent with 3 child diagrams

The initial icom number was build up by this rule,

(defrule parent3-icom-c
(declare (salience -2))
(parent3-boundary ?p3-name ?p3-data c)

(assert (parent3-icom ?p3-name ?p3-data control 1))
)

(defrule parent3-icom-o
(declare (salience -2))
(parent3-boundary ?p3-name ?p3-data o)

(assert (parent3-icom ?p3-name ?p3-data output 1))
)

(defrule parent3-icom-i
(declare (salience -2))
(parent3-boundary ?p3-name ?p3-data i)

(assert (parent3-icom ?p3-name ?p3-data input 1))
)

(defrule parent3-icom-m
(declare (salience -2))
(parent3-boundary ?p3-name ?p3-data m)

(assert (parent3-icom ?p3-name ?p3-data mech 1))
)

(defrule parent3-control-add
(declare (salience -3))

C-20

?f1<-(parent3-icom ?p3-naie ?datal control ?one)
?i<-(parent3-icon ?p3-nane ?data2 control ?n
(test Cneq ?datai ?data2))

(retract Mf Mf)
(bind ?total (+ ?one ?n)
(assert (parent3-icom ?p3-naie =(gensym) control ?total))

-- - - - - - - - - - - - - - - - - - -

(def rule parent3-output-add
(declare (salience -3))
?fI<-(parent3-icom ?p3-name ?datai output ?one)
Mf<-(parent3-icom ?p3-name ?data2 output ?n)
(test (neq ?datal ?data2))

(retract Mf M)
(bind ?total (+ ?one W)
(assert (parent3-icom ?p3-name =(gensym) output ?total))

-- - - - - - -- - - - - - - - - -

(def rule parent3-input-add
(declare (salience -3))
?fl<-(parent3-icoi ?p3-name ?datal input ?one)
?f2<-(parent3-icom ?p3-name ?data2 input ?n)
(test (neq ?datal ?data2))

(retract ?fI Mf)
(bind ?total (+ ?one ?n))
(assert (parent3-icom ?p3-name =(gensym) input ?total))

(defrule parent3-mech-add
(declare (salience -3))
?fl<-(parent3-icom ?p3-name ?datal mech ?one)
?f2<-(parent3-icom ?p3-name ?data2 znech ?n)
(test (neq ?datal ?data2))

(retract Mf 1M1)
(bind ?total (+ ?one Wn)
(assert (parent3-icom ?p3-name =(gensyn) mech ?total))

-- - - - - - - - - - - -- - - - - - - - - - - -

(del rule child3-icom-c

C-21

(declare (salience -2))
(child3-boundary ?c3-parent ?c3-name ?c3-data c)

(assert (child3-icom ?c3-parent ?c3-data control1)

(deirule childS3-icom-o
(declare (salience -2))
(child3-boundary ?c3-parent ?c3-name ?c3-data o)

(assert (child3-icom ?c3-parent ?c3-data output 1))

(defrule child3-icon-i
(declare (salience -2))
(echild3-boundary ?c3-parent ?c3-name ?c3-data i)

(assert (child3-icom ?c3-parent ?c3-data input 1I")

(defrule child3-icom-m
(declare (salience -2))
(child3-boundary ?c3-parent ?c3-name ?c3-data ms)

(assert Cchil.d3-icom ?c3-parent ?c3-data mech 1))

-- -

(defrule child3-control-add
(declare (salience -3))
?fl<-(child3-icom ?c3-parent ?datal control ?one)
?i<-(child3-icom ?c3-parent ?data2 control ?n)
(test (neq ?datai ?data2))

(retract Mi Mf)
(bind ?total (+ ?one Wn)
(assert (child3-icom ?c3-parent =(gensym) control ?total))

-- - - - - -- - - -- -

(def rule child3-output-add
(declare (salience -3))
?fi<-(child3-icom ?c3-parent ?datal output ?one)
?f2<-(child3-icom ?c3-parent ?data2 output ?n)
(test (neq ?datai ?data2))

(retract Mf 1M)
(bind ?total (+ ?one W)
(assert (child3-icom ?c3-parent =(gensyn) output ?total))

C-22

(detrule child3-input-add
(declare (salience -3))
?f1<-(child3-icom ?c3-parent ?datal input ?one)
?f2<-(chilal-icom ?c3-parent ?data2 input ?n)
(test (neq ?datal ?data2))

(retract ?fM ?f2)
(bind ?total (+ ?one ?n))
(assert (child3-icom ?c3-parent =(gensym) input ?total))
)

(defrule child3-mech-add
(declare (salience -3))
?fi<-(child3-icom ?c3-parent ?datal mech ?one)
?f2<-(child3-icom ?c3-parent ?data2 mech ?n)
(test (neq ?datal ?data2))

(retract Tl ?f 2)
(bind ?total (+ "?one ?n))
(assert (child3-icom ?c3-parent =(gensym) mech ?total))
)

Check Parent with 3 child boundary icom number consistancy

(defrale check-parent-3child-control-no-retract
(declare (sali,%nce -6))
(parent3-icom ?p3-name ? control ?p)
(child3-icor, ?p3-name ? control ?c)
(test (!= ?p sc))

(if (> ?p ?c)
t~ien
(bind ?pd (- ?p ?c))

(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)
(printout t " of parent activity "?p3-name" is "?pd" control(s) more than " crlf)
(printout t " its child activities,' crlf)
(printout t " Are there ''consists of'' data items at boundary?" crlf)
(printout t " Please recheck the syntax," crlf)

else
(bind ?cd (- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary controls" cilf)

(printout t " of the parent activity "?p3-name" is "?cd" control(s) less " crlf)

C-23

(printout t " than its child boundary controls." crlf)
(printout t " Are there "consists of" data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

(defrule check-parent-3child-output
(declare (salience -6))
?f1<-(parant3-icom ?p3-name ? output ?p)
?f2<-(child3-icom ?p3-name ? output ?c)
(test (!= ?p ?c))

(retract ?f1 ?f2)
(if (> ?p ?c)

then

(bind ?pd (- ?p ?c))
(printout t "WARNING, there might be an ERROR: The number oi boundary outputs" crlf)
(printout t " of parent activity " ?p3-name " is " ?pd " output(s) more " crlf)
(printouu t " than its child activities." crlf)
(printout t " Are there "consists of" data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

else

(bind ?cd (- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary outputs" crlf)
(printout t " of the parent activity " ?p3-name " is " ?cd " output(s) less " crlf)

(printout t " than its child boundary outputs." crlf)
(printout t " Are there "consists of'' data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

))

(defrule check-parent-3child--input
(declare (salience -6))
?fl<-(parent3-icom ?p3-name ? input ?p)
?f2<-(child3-icom ?p3-name ? input ?c)
(test (!= ?p ?c))

(retract ?f1 ?f2)

(if (> ?p ?c)
then
(bind ?pd (- ?p ?c))
(printout t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)

(printout t " of parent activity " ?p3-name " is " ?pd " input(s) more " crlf)
(printout t " than its child activities." crlf)

(printout t " Are there ''consists of'' data items at boundary?" crlf)

(printout t " Please recheck the syntax." crlf)

else
(bind ?cd f- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)

(printout t " of the parent activity " ?p3-name " is " ?cd " input(s) less " crlf)

(printout t " than its child boundary inputs." crlf)
(printout t " Are there "consists of'' data items at boundary?" crlf)

(printout t " Please zicheck the syntax." crlf)

C-24

(del rule check-parent-3child-mech
(declare (salience -6))
?f1<-(parent3-icom ?p3-naie ? mech ?p)
?f2<-(child3-icom ?p3-nate ? mech ?c)
(test C!= ?p ?c))

(retract Mf 1Mf)
(if (> ?p ?C)
Then
(bind ?pd (- ?p ?c))
(printout t "WARNING, there might be an ERROR: The number of b6-indary mechanisms" cr11)

(printout t " of parent activity "1 ?p3-nane 11 is "1 ?pc " mechanism(s) more "cr11)

(printout t " than its child activities." cr11)
(printout t " Are there ''consists of"' data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

else
(bind ?cd (- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary mechanisms" crlf)
(printout t " of the parent activity " ?p3-name " is "1 ?cd " mechnaism(s) less "crlf)

(printout t " its child child boundary mechanisms." cr11)
(printout t " Are there "'consists of"' data items at boundary?" crlf)
(printout t "1 Please recheck the syntax." crlf)

This rule will create the boundary facts for activities having
4 child diagrams.

(defrule parent-4child
(declare (salience 100))
?pf 1<- (act-has-child ?parent4 ?childik-null)
?pf 2<- (act-has-child ?parent4 ?child2&-?childi&Thull)
?pf 3<- (act-has-child ?parent4 ?child3&'?child2&-?child&hull)
?pf4<- (act-has-child ?parent4

?child4& ?child3&-?child2& ?childl&-null)
(not (act-has-child ?parent4

? child5&-?child4&-?child3&-?child2&?childl&hull))

(retract ?pfl ?pf 2 ?pf 3 ?pf4)
(assert (parent4 ?parent4 ?childl ?child2 ?child3 ?child4))

(del rule parent4-boundary
(parent4 ?parent4 ?childl ?child2 ?child3 ?child4)
(icom-tuple ?parent4 ?p-data ?p-rel ?)

(assert (parent4-boundary ?parent4 ?p-data ?p-rel))

C-25

(del rule child4-boundary-childl
(parent4 ?parent4 ?child. ?child2 ?child3 ?child4)
(icom-tuple ?childl ?cl-data ?cl-rel ?)

(assert (child4-boundary ?parent4 ?childl ?cl-data ?cl-rel))

(defrule child4-boundary-child2
Cparent4 ?parent4 ?childl ?child2 ?child3 ?child4)
(icom-tuple ?child2 ?c2-data ?c2-re. ?)

(assert (child4-boundary ?parent4 ?child2 ?c2-data ?c2-rel))

(del rule child4-boundary-child3
(parent4 ?parent4 ?childl ?child2 ?child3 ?child4)
(icom-tuple ?child3 ?c3-data ?c3-rel ?)

(assert (child4-boundary ?parent4 ?child3 ?c3-data ?c3-rel))

(del rule child4-boundary-child4
(parent4 ?parent4 ?childi ?child2 ?child3 ?child4)
(icom-tuple ?child4 ?c4-data ?c4-rel ?)

(assert (child4-boundary ?Parent4 ?child4 ?c4-data ?c4-rel))

These rules will clear the duplicated boundary facts in the facts
created by the previous rule.
CONDITION:

1. 3 activities out of 4 sharing a same data
2. 2 activities out of 4 sharing a same data
3. all 4 activities are sharing a same data

element but with different icom code
Condition 3 is not likely to happen, so it is not implemented

(del rule clear-4child-3mid
?fl<-(child4-boundary ?parent4 ?childl ?cl-data ?cl-rel)
?f<-(child4-boundary ?parent4 ?child2&-?childi ?ci-data ?c2-rel&-?cl-rel)
?f<-(child4-boumdary ?parent4 ?child3&-?child2&-?childl ?cl-data

?c3-rel& ?c2-rel& ?cl-rel)

(retract ?f 1)

C-26

(retract Mt)
(retract Mf)

;It a intermediate arrow is the input of one box but also the
;output and input of another two boxes. It must be removed before
the arrow between the other boxes been removed.

(def rule clear-4child-2mid-I
(child4-boundary ?paernt4 ?childl ?cl-data ?cl-rel)

(child4-boundary ?parent4 ?child2k-?childi ?cl-data ?c2-rel&'?cl-rel)
?fi<- (child4-boundary ?parent4 ?child3&-?child2k&?childl ?cl-data ?c3-rel)
(test (or (eq ?c3-rel ?c2-rel)

(eq ?c3-rel ?ci-rel)))

(retract ?f 1)

(def rule clear-4child-2mid
(declare (salience -1))

?fi<-(child4-boundary ?parent4 ?childl ?ci-data ?cl-rel)
?f<-(child4-boundary ?parent4 ?child2&-?childi ?cl-data ?c2-rel&-?cl-rel)

(retract ?f 1)
(retract ?f 2)

Remove the duplicated boundary arrows for parents with
with 4 child diagrams, Consider that at most 3 child
out of 4 might use the same data.

(def rule remove-4child-3boundary
(child4-boundary ?parent4 ?childl ?ci-data ?cl-rel)

?f 2<- (child4-boundary ?parent4 ?child2&-?childi ?cl-data ?cl-rel)
?f 3<- (child4-boundary ?parent4 ?child3&-?child2&-?childl ?cl-data ?ci-rel)

(retract Mf 2M)

(def rule remove-4child-2boundary
(child4-boundary ?parent4 ?childl ?cl-data ?cl-rel)

?f<-(child4-boundary ?parent4 ?child2&?childi ?cl-data ?cl-rel)

C-27

(retract Mf)

This rule will get rid of consists of intermediate data relations
*that a data has 3 subcomponents.

(def rule rid-4child-3consists
?fi<-(child4-boundary ?parent4 ?childl ?ci-data ?cI-rel)
?12<-(child4-boundaxy ?parent4 ?child2k-?childi ?c2-data&-?cI-data ?c2-rel)
?f<-(child4-boundary ?parent4 ?child3k&?child2k-?childi ?c3-datak-?c2-datak-?cl-data ?c3-rel)
?W4-Cchild4-boundary ?parent4 ?child-pk-?child3k-?child2k&?childI

? cp-datak-?c3-datak-?c2-datak-?cl-data ?cp-rel&-?c3-rel&-?c2-rel'?cl-rel)
(consists-of-name ? ?cp-data ?c3-data)
(consists-of-name ? ?cp-data ?c2-data)
(consists-of-name ? ?cp-data ?cl-data)

(retract ?f 1)
(retract Mf)
(retract Mf)
(retract ?f 4)

This rule should fired later than -3consists; since if
2 of 3 consists facts are retracted, the remaining one will not
be matched to be retracted.

(def rule rid-4child-2consists
(declare (salience -1))
?fl<-(child4-boundaxy ?parent4 ?childl ?cl-data ?cl-rel)
?f<-(child4-boundary ?parent4 ?child2&"?childi ?c2-data&-?ci-data ?c2-rel)
?f<-(child4-boundary ?parent4 ?child-p&-?child2&?child.

?cp-data&-?c2-datak&?cl-data ?cp-rel&-?c2-rel&7?cl-rel)
(consists-of-name ? ?cp-data ?c2-data)
(consists-of-name ? ?cp-data ?cl-data)

(retract ?fl1 ?f 2 ?f 3)

This rule check a parent activity with 4 child diagram to see if
there are any boundary data belonging to the parent but not a part of
the child diagrams.

(defrule check-4ch4.d-parent

C-28

(declare (salience -5))
(parent4-boundary ?p-name ?p-data ?p-rel)
(not (consists-of-name ? ?p-data ?c-data))
(not (child4-boundary ?p-name ?child4 ?p-data ?c4-rel))

(printout t "ERROR: Data inconsistency between parent activity
"?p-name " data "' ?p-rel " " ?p-data " and its child

diagrams." crlf)
(assert (syntax-error-occurred))
)

(defrule check-4child-parent-consists
(declare (salience -6))

(parent4-boundary ?p-name ?p-data ?p-rel)
(consists-of-name ? ?p-data ?c-data)

(not (child4-boundary ?p-name ?child4 ?c-data ?c4-rel))

(printout t "ERROR: Data inconsistency between parent activity
"?p-name " data "' ?p-rel "' " ?p-data " and its child
diagrams." crlf)
(assert (syntax-error-occurred))
)

; This rule checks if a parent with 4 child diagrams that
; some of them have the same boundary data element but
; with different icom relation in contrast with their parent.
Then it is an icom ERROR.

(defrule check-4child-icom
(declare (salience -5))
(parent4-boundary ?p-name ?p-data ?p-rel)
(child4-boundary ?p-name ?c-name ?p-data ?c-rel)
(test (neq ?p-rel ?c-rel))

(printout t "ERROR: icom inconsistency between activity
?p-name " and its child diagram
?c-name "." crlf)
(assert (syntax-error-occurred))
)

This rule checks if a parent have 4 child, and there is some
boundary data element in the child diagrams
but can't find the same data in their parent then inconsistency
happened.

(defrule check-4child-child
(declare (salience -5))

C-29

(child4-boundary ?p-name ?c-name ?c-data ?c-rel)
(not (consists-o-name ? ?p-data ?c-data))
knot (parent4-boundary ?p-nane ?c-data ?p-rel))

(printout t "ERROR: Data inconsistency between child activity
"o ?c-name " data "' ?c-rel "'"?c-data "1 and its
parent." crli)

(assert (syntax-error-occurred))

Parent with 4 child diagrams

The initial icom number was build up by this rule,

(defrule parent4-icom-c
(declare (salience -2))
(parent4-boundary ?p4-name ?p4-data c)

(assert (parent4-icom ?p4-name ?p4-data control 1))

(defrule parent4-icom-o
(declare (salience -2))
(parent4-boundary ?p4-name ?p4-data o)

(assert (parent4-icom ?p4-name ?p4-data output1)

(def rule parent4-icom-i
(declare (salience -2))
(parent4-boundary ?p4-nanie ?p4-data i)

(assert (parent4-icom ?p4-name ?p4-data input 1)

(def rule parent4-icom-m
(declare (salience -2))
(parent4-boundary ?p4-name ?p4-data m)

(assert (parent4-icom ?p4-name ?p4-data mech 1))

-- - - - - - -- - - - - - -- - - - - - -

(defrule parent4-control-add
(declare (salience -3))
?fl<-(parent4-icom ?p4-nane ?datal control ?one)
?f2<-(parent4-icom ?p4-name ?data2 control ?n)
(test (neq ?datal ?data2))

C- 30

(retract ?Mi ?M2)
(bind ?total (+ ?one ?n))
(assert (parent4-icom ?p4-name =(gensym) control ?total))
)

(defrule parent4-output-add
(declare (salience -3))
?fl<-(parent4-icom ?p4-name ?datal output ?one)
?f2<-(parent4-icom ?p4-name ?data2 output ?n)
(test (neq ?datal ?data2))

(retract ?M ?fM2)
(bind ?total (+ ?one ?n))

(assert (parent4-icom ?p4-name =(gensym) output ?total))

)

(defrule parent4-input-add
(declare (salience -3))
?fi<-(parent4-icom ?p4-name ?datal input ?one)
?f2<-(parent4-icom ?p4-name ?data2 input ?n)
(test (neq ?datal ?data2))

(retract ?l ?f 2)
(bind ?total (+ ?one ?n))
(assert (parent4-icom ?p4-name =(gensym) input ?total))
)

(defrule parent4-mech-add

(declare (salience -3))
?f1<-(parent4-icom ?p4-name ?datal ?mech ?one)
?f2<-(parent4-icom ?p4-name ?data2 ?mech ?n)

(test (neq ?datai ?data2))

(retract ?M1 ?f2)
(bind ?total (+ ?one ?n))
(assert (parent4-icom ?p4-name =(gensym) mech ?total))

)

(defrule child4-icom-c
(declare (salience -2))

(child4-boundary ?c4-parent ?c4-name ?c4-data c)

C-31

Cassert Cchild4-icom ?c4-parent ?c4-data control 1))

(deirule child4-icom-o
(decla.e (salience -.2))
(child4-boundary ?c4-parent ?c4-name ?c4-data o)

(assert (child4-icom ?c4-parent ?c4-data output 1)

(defrule child4-icom-i
(declare (salience -2))
(cbild4-boundary ?c4-parent ?c'i name ?c4-data i)

(assert (child4-icom ?c4-parent ?c4-data input 1))

(defrule child4-icom-m
(declare (salience -2))
(child4-boundary ?c4-parent ?c4-name ?c4-data m)

(assert (child4-icom ?c4-parent ?c4-data mech 1))

-- -

(defrule child4-control-add
(declare (salience -3))
?fi<-(child4-icom ?c4-parent ?datal control ?one)
?f2<-(child4-icom ?c4-parent ?data2 control ?n)
(test (neq ?datal ?data2))

(retract Mf M ~)
(bind ?total. (+ ?one ?n))
(assert Cchild4-icom ?c4-parent =(gensym) control ?total))

-- - -- - -- - - - - -

(defrule child4-output-add
(declare (salience -3))
?fl<-(child4-icom ?c4-parent ?datal output ?one)
?f2<-(child4-icom ?c4-parent ?data2 output ?n)
(test (neq ?datai ?data2))

(retract Mf 1M)
(bind ?total (+ ?one ?n)
(assert (child4-icom ?c4-parent =(gensym) output ?total))

C-32

-- - - - - - - - -

(defrule child4-input-add
(declare (salience -3))
?fl<-(child4-icom ?c4-parent ?datal input ?one)
?f2<-(child4-icom ?c4-parent ?data2 input ?n)
(test (neq ?data. ?data2))

(retract Mf 1M~)
(bind ?total (+ ?one ?n))
(assert (child4-icom ?c4-parent =(gensym) input ?total))

-- - - - - - -- - - - - - -

(defrule child4-mech-add
(declare (salience -3))
?fl<-(child4-icom ?c4-parent ?datal mech ?one)
?f2<-(child4-icom ?c4-parent ?data2 mech ?n)
(test (neq ?datal ?data2))

(retract Mf 1Mf)
(bind ?total (+ ?one ?n))
(assert (child4-icom ?c4-parent =(gensym) mech ?total))

Check Parent with 4 child boundary icom number cons istancy

(defrule check-parent-4child-control
(declare (salience -6))
?fl<-(parent4-icom ?p4-naie ? control ?p)
?f2<-(child4-icom ?p4-name ? control ?c)
(test (!= ?p ?c))

(retract Mf 1M)
(if (> ?p ?c)
then
(bind ?pd (- ?p ?c))
(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)

(printout t " of parent activity "?p4-name" is "?pd" control(s) more than " crlf)
(printout t " its child activities." crlf)
(printout t " Are there '"consists of'' data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

else
(bind ?cd (- ?c ?p))

C-33

(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)

(printout t " of the parent activity "?p4-name" is "?cd" control(s) less " crlf)
(printout t " than its child boundary controls." crlf)
(printout t " Are there ''consists of'' data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

(defrule check-parent-4child-output
(declare (salience -6))
?fi<-(parent4-icom ?p4-name ? output ?p)
?f2<-(child4-icom ?p4-name ? output ?c)
(test (!= ?p ?c))

(retract ?f1 ?f2)
(if (> ?p ?c)
then
(bind ?pd (- ?p ?c))
(printout t "WARNING, there might be an ERROR: The number of boundary outputs" crlf)

(printout t " of parent actLvity "1 ?p4-name " is " ?pd " output(s) more " crlf)

(printout t " than its child activities." crlf)
(printout t " Are there ''consists of'' data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)
else

(bind ?cd (- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary outputs" crlf)

(printout t " of the parent activity " ?p4-name " is " ?cd " output(s) less " crlf)

(printout t " than its child boundary outputs." crlf)
(printout t " Are there ''consists of'' data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

(defrule check-parent-4child-input
(declare (salience -6))
?fl<-(parent4-icom ?p4-name ? input ?p)

?f2<-(child4-icom ?p4-name ? input ?c)

(test (!= ?p ?c))

(retract ?f1 ?f2)
(if (> ?p ?c)

then

(bind ?pd (- ?p ?c))
(printout t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)

(printout t " ox parent activity " ?p4-name " is " ?pd " input(s) more " crlf)

(printout t " than its child activities." crlf)

(printout t " Are there ''consists of'' data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

else
(bind ?cd (- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)

(printout t " of the parent activity " ?p4-name " is " ?cd " input(s) less " crlf)

C-34

(printout t " than its child boundary inputs." crlf)

(printout t " Are there ''consists of" data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

(defrule check-parent-4child-mech
(declare (salience -6))
?f1<-(parent4-icom ?p4-name ? mech ?p)
?f2<-(child4-icom ?p4-name ? mech ?c)
(test (!= ?p ?c))

(retract ?fM ?f2)
(if (> ?p ?c)
then
(bind ?pd (- ?p ?c))
(printout t "WARNING, there might be an ERROR: The number of boundary mechanisms" crlf)

(printout t " of parent activity " ?p4-name " is " ?pd " mechanism(s) more " crlf)
(printout t " than its child activities." crlf)
(printout t " Are there "consists of" data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)
else

(bind ?cd (- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary mechanisms" crlf)

(printout t " of the parent activity " ?p4-name " is " ?cd " mechnaism(s) less " crlf)

(printout t " its child child boundary mechanisms." crlf)
(printout t " Are there ''consists of'' data items at boundary?" crlf)

(printout t " Please recheck the syntax." crlf)

This rule will create the boundary facts for activities having
; child diagrams.

(defrule parent-Schild
(declare (salience 100))
?fl<-(act-has-child ?parentS ?childl&Tnull)
?f2<-(act-has-child ?parentS ?child2&-?childl&-null)
?f3<-(act-has-child ?parentS ?child3&-?child2&-?childl&-null)
?f4<-(act-has-child ?parentS

?child4&'?child3&'?child2&'?childl&Tnull)
?fS<-(act-has-child ?parentS

?childS& ?child4&'?child3&'?child2&-?childl&null)
(not (act-has-child ?parent5

C-35

?child6&-?child5&-?child4k-?child3&-?child2&-?childik-null))

(retre'ct ?fl 1M~ ?f3 ?f4 ?f 5)

(assert (parentS ?parent5 ?childi ?child2 ?child3 ?child4 ?child5))

(defrule parent5-boundary

(parentS ?parent5 ?childi ?child2 ?child3 ?child4 ?child5)
(icom-tuple ?parent5 ?p-data ?p-rel ?)

(assert (parentS-boundary ?parent5 ?p-data ?p-rel))

(def rule childS-boundary-childl
(parentS ?parent5 ?childl ?child2 ?child3 ?child4 ?child5)

(icom-tuple ?childl ?cl-data ?cl-rel ?)

(assert (childS-boundary ?parent5 ?childl ?cl-data ?cl-rel))

(def rule child5-boundary-child2
(parent5 ?parentS ?childi ?child2 ?child3 ?child4 ?childS)

(icom-tuple ?child2 ?c2-data ?c2-rel ?)

(assert (childS-boundary ?parent5 ?child2 ?c2-data ?c2-rel))

(def rule child5-boundary-child3

(parents ?parent5 ?childl ?child2 ?child3 ?child4 ?child5)
(icom-tuple ?child3 ?c3-data ?c3-rel ?)

(assert (child5-boundary ?parent5 ?child3 ?c3-data ?c3-rel))

(defrule child5-boundary-child4

(parents ?parent5 ?childl ?child2 ?child3 cehild4 ?child5)
(icom-tuple ?child4 ?c4-data ?c4-re. 7)

(assert (child5-boundary ?parent5 ?child4 ?c4-data ?c4-rel))

(def rule child5-boundary-child5

(parents ?parentS ?childl ?child2 ?child3 ?child4 ?child5)
(icom-tuple ?child5 ?cS-data ?c5-rel ?)

(assert (child5-boundary ?parentS ?child5 ?c5-data ?c5-rel))

C-36

; These rulez will clear the duplicated boundary facts in the facts
;created by the previous rule.
*CONDITION:

1. 4 activities out of 5 sharing a same data
2. 3 activities out of 6 sha::ing a same data
3. 2 activities out of 5 sharing a same data
4. all 5 activities are sharing a same data

element but with different icom code
Condition 1 and 4 is not likely to happen, so it is not implemented

(def rule clear-Schild-3mid
?fl<-(child-boundary ?parentS ?childl ?cl-data ?ci-rel)

?f2<-(child5-boundary ?parent5 ?child2&?childi ?cl-data ?c2-rel&?ci-rel)
?f3<-(child5.-boundary ?parent5 ?child3k&?child2k&?childi ?ci-data

?c3-rel& ?c2-relk-?cl-rel)

(retract ?f 1)
(retract Mf)
(retract Mf)

;If a intermediate arrow is the input of one box but also the
;output and input of another two boxes. It must be removed before
the arrow between the other boxes been removed.

(def rule clear-Schild-2mid-I
(childS-boundary ?paernt5 ?childi ?cl-data ?cl-rel)

(childS-boundary ?parent5 ?child2&?childi ?cl-data ?c2-rel&?ci-rel)
?f 1<- (childS-boundary ?parentS ?child3&-?child2&-?childl ?ci-data ?c3-rel)
(test (or (eq ?c3-rel ?c2-rel)

(eq ?c3-rel ?ci-rel)))

(retract ?f1)

(def rule clear-Schild-2mid
(declare (salience -1))
?fi<-(child5-boundary ?parent5 ?childi ?cl-data ?cl-rel)
?f2<-(childS-boundary ?parent5 ?child2&-?childi ?ci-data ?c2-rel&-?cl-rel)

(retract ?f 1)
(retract Mf)

C-37

;Remove the duplicated boundary arrows for parents with
;with 6 child diagrams. Consider that at most 3 child
;out of 5 might use the same data.

(del rule remove-5child-3boundary
(childS-boundary ?parentS ?childl ?cl-data ?cI-rel)

?f 2<- (childS-boundary ?parentS ?child2k'?childi ?cI-data ?cl-rel)
?f 3<- (childS-boundary ?parent5 ?child3k&?child2k&?childi ?ci-data ?ci-rel)

(retract Mf 2M)

(del rule remove-Schild-2boundary
(childS-boundary ?parentS ?childi ?cI-data ?ci-rel)

?f2<-(childS-boundary ?parentS ?child2&-?childi ?ci-data ?cl-rel)

(retract Mf)

(del rule rid-Schild-3consists
?fi<-(child5-boundary ?parentS ?childl ?ci-data ?cl-rel)
?f2<-(childS-boundary ?parentS ?child2kr?childi ?c2-data&-?cl-data ?c2-rel)
?f<-(child6-boundary ?parentS ?child3k&?child2k&?childi

?c3-data&'?c2-data&"?cl-data ?c3-rel)
?f4<-(childS-boundary ?parentS ?c1hild-p-?child3&"?child2&'?childI

?cp-data&-?c3-datak-?c2-data&-?cl-data ?cp-rel&-?c3-rel&-?c2-rel&-?ci-rel)
(consists-of-name ? ?cp-data ?c3-data)
(consists-of-name ? ?cp-data ?c2-data)
(consists-of-name ? ?cp-data ?ci-data)

(retract ?fI)
(retract ?f 2)
(retract Mf)
(retract ?f 4)

(def rule rid-5child-2consists
(declare (salience -1)

?fi<-(childS-boundary ?parent5 ?childl ?cl-data ?cI-rel)
?f2<-(childS-boundary ?parentS ?child2&-?childl ?c2-data&-?cl-data ?c2-rel)
?f3<-(child5-boundary ?parentS ? child-pk-? child2&-?child I ?cp-data&-?c2-data&-?ci-data

?cp-rel& ?c2-rel&'?cl-rel)
(consists-of-name ? ?cp-data ?c2-data)
(consists-of-name ? ?cp-data ?ci-data)

(retract ?f 1 ?f2 Mf)

C-38

This rule check a parent activity with 5 child diagram to see if
there are any boundary data belonging to the parent but not a part of
the child diagrams.

(defrule check-Schild-parent
(declare (salience -5))
(parentS-boundary ?p-name ?p-data ?p-rel)

(not (consists-of-name ? ?p-data ?c-data))

(not (childS-boundary ?p-name ?child5 ?p-data ?cS-rel))

(printout t "ERROR: Data inconsistency between parent activity
"?p-name " data C' ?p-rel "' " ?p-data " and its child
diagrams." crlf)
(assert (syntax-error-occurred))
)

(defrule check-Schild-parent-consists
(declare (salience -6))
(parentS-boundary ?p-name ?p-data ?p-rel)
(consists-of-name ? ?p-data ?c-data)
(not (childS-boundary ?p-name ?childS ?c-data ?c-rel))

(printout t "ERROR: Data inconsistency between parent activity
"?p-name " data C" ?p-rel "' " ?p-data " and its child
diagrams." crlf)
(assert (syntax-error-occurred))
)

9)*9*,:,,,:,,)9*:::J9*9*JDJ9I)9DI9 P:D:P:9DPP99*)*9D)*9 *9::::t,

This rule checks if a parent with 5 child diagrams that
some of them have the same boundary data element but

with different icom relation in contrast with their parent.

Then it is an icom ERROR.

(defrule check-Schild-icom

(declare (salience -5))

(parentS-boundary ?p-name ?p-data ?p-rel)
(childS-boundary ?p-name ?c-name ?p-data ?c-rel)

(test (neq ?p-rel ?c-rel))

(printout t "ERROR: icom inconsistency between activity

?p-name " and its child diagram " ?c-name "." crlf)
(assert (syntax-error-occurred))
)

This rule checks if a parent have 5 child, and there is some

C-39

; boundary data element in the child diagrams
; but can't find the same data in their parent then inconsistency

; happened.

(defrule check-Schild-child

(declare (salience -5))

(childS-boundary ?p-name ?c-name ?c-data ?c-rel)
(not (consists-o-name ? ?p-data ?c-data))
(not (parentS-boundary ?p-name ?c-data ?p-rel))

(printout t "ERROR: Data inconsistency between child activity
" ?c-name " data "' ?c-rel "' " ?c-data " and its

parent." crlf)
(assert (syntax-error-occurred)))

Parent with 5 child diagrams

The initial icom number was build up by this rule,

(defrule parentS-icom-c

(declare (salience -2))
(parentS-boundary ?p5-name ?pS-data c)

(assert (parentS-icom ?pS-name ?pS-data control 1))
)

(defrule parentS-icom-o
(declare (salience -2))
(parentS-boundary ?p5-name ?pS-data o)

(assert (parentS-icom ?p5-name ?pS-data output 1))
)

(defrule parentS-icom-i
(declare (salience -2))
(parentS-boundary ?pS-name ?pS-data i)

(assert (parent5-icom ?pS-name ?pS-data input 1))
)

(defrule parentS-icom-m
(declare (salience -2))
(parents-boundary ?pS-name ?pS-data m)

(assert (parentS-icom ?pS-name ?pS-data mech 1))

C-40

-- - - - - - - - - - - - - - - - -- -- -

(del rule parentS-control-add
(declare (salience -3))
?ll<-(parentS-icom ?pS-name ?datal control ?one)
?l2<-(parentS-icom ?p5-name ?data2 control ?n)
(test (neq ?datai ?data2))

(retract Mf 1M)
(bind ?total (+ ?one Wn)
(assert (parentS-icom ?pS-name =(gensym) control ?total))

-- - - - -- - - - - - - - - - - - - -

(del rule parentS-output-add
(declare (salience -3))
?l<-(parentS-icom ?pS-naie ?datal output ?one)
?l2<-(parentS-icom ?pS-naue ?data2 output ?n)
(test (neq ?datal ?data2))

(retract Mf 1 d)

(bind ?total (+ ?one ?n)
(assert (parentS-icom ?pS-nane m(gensym) output ?total))

-- - - - - - - - - - - - - - - - - - - -

(del rule parent5-input-add
(declare (salience -3))
?fl<-(parent5-icom ?pS-name ?datai input ?one)
?f2<-(parentS-icom ?pS-name ?data2 input ?n)
(test (neq ?datal ?data2))

(retract ?f1 Ml)
(bind ?total (+ ?one Wn)
(assert (parentS-icom ?pS-nane =(gensyn) input ?total))

(del rule parentS-niech-add
(declare (salience -3))
?fi<-(parentS-icom ?pS-nane ?datal mech ?one)
?f2<-(parent5-icom ?pS-nane ?data2 mech ?n)
(test (neq ?datal ?data2))

(retract ?fI M1)
(bind ?total (+ ?one ?n)

C-41I

(assert (parentS-icom ?pS-name =Cgensym) mech ?total))

-- - - - - - - - - - - -- - - - - - - - - - - -

(defrulo child5-icom-c
(declare (salience -2))
(childS-boundary ?cS-parent ?pS-name ?cS-data c)

(assert (childS-icom ?cS-parent ?cS-data control1)

(defrule childS-icom-o
(declare (salience -2))
(child6-boundary ?cS-parent ?cS-naue ?cS-data o)

(assert (childS-icom ?c5-parent ?c5-data output 1))

(defrule childS-icom-i
(declare (salience -2))
(child5-boundary ?cS-parent ?cS-name ?c5-data i)

(assert (childS-icom ?cS-parent ?cS-data input 1)

(def rule childS-icom-m
(declare (salience -2))
(child5-boundary ?cS-parent ?cS-nane ?c5-data m)

(assert (childS-icom ?c5-parent ?cS-data mech 1))

(def rule child6-control-add
(declare (salience -3))
?fl(-(child5-icom ?c5-parent ?datal control ?one)
?f2<-(childS-icom ?c5-parent ?data2 control ?n)
(test (neq ?datai ?data2))

(retract Mf 1M)
(bind ?total (+ ?one ?n))
(assert (childS-icom ?c5-parent =(gensym) control ?total))

-- - - - - - - - - - -- - - - - -- - - -

(defrule child5-output-add

C-4 2

(declare (salience -3))
?fi<-(childS-icou ?cS-parent ?datal output ?one)
?f2<-(child5-icom ?c5-parent ?data2 output ?n)
(test (neq ?datal ?data2))

(retract Mi M~)
(bind ?total (+ ?one ?n))
(assert (childS-icom ?cS-parent =(gensym) output ?total))

-- - - - - - - - - - -- - - - - - - - - -

(defrule childS-input-add
(declare (salience -3))
?il<-(childS-icom ?c5-parent ?datal input ?one)
?f<-(childS-icom ?cS-parent ?data2 input ?n)
(test (neq ?datal ?data2))

(retract Mf 1M)
(bind ?total (+ ?one ?n))
(assert (childS-icom ?cS-parent =(gensym) input ?total))

-- - - - - - - - - - -- - - - - - - - - -

(def rule child5-mech-add
(declare (salience -3))
?ii<-(childS-icom ?cS-parent ?datal mech ?one)
?12<-(childS-icom ?cS -parent ?data2 mech ?n)
(test (neq ?datal ?data2))

(retract Mf 1M)
(bind ?total (+ ?one ?n))
(assert (childS-icom ?cS-parent =(gensym) mech ?total))

Check Parent with 5 child boundary icom number consistancy

(defrule check-parent-5child-control
(declare (salience -6))
(parent5-icom ?pS-name ? control ?p)
(childS-icom ?p5-name ? control ?c)
(test (!= ?p ?c))

(if (> ?p ?c)
then

(bind ?pd (- ?p ?c))
(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)
(printout t "of parent activity "?pS-nane" is "?pd" control(s) more than " crlf)
(printout t " its child activities." crlf)

C-43

,printout t " Are there "consists of" data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

else

(bind ?cd (- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)

(printout t " of the parent activity "?pS-name" is "?cd" control(s) less " crlf)

(printout t " than its child boundary controls." crlf)

(printout t " Are there "consists of'' data items at boundary?" crlf)

(printout t " Please recheck the syntax." crlf)

(defrule check-parent-Schild-output

(declare (salience -6))
(parentS-icom ?pS-name ? output ?p)
(childS-icom ?pS-name ? output ?c)

(test (!= ?p ?c))

(if (> ?p ?c)
then
(bind ?pd (- ?p ?c))

(printout t "WARNING, there might be an ERROR: The number of boundary outputs" crlf)
(printout t ' of parent activity " ?pS-name " is " ?pd " output(s) more " crlf)

(printout t " than its child activities." crlf)

(printout t " Are there ''consists of'' data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

else
(bind ?cd (- ?c ?p))

(printout t "WARNING, there might be an ERROR: The number of boundary outputs" crlf)

(printout t " of the parent activity " ?pS-name " is " ?cd " output(s) less " crlf)
(printout t " than its child boundary outputs." crlf)
(printout t " Are there "consists of" data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

(defrule check-parent-Schild-input
(declare (salience -6))

(parentS-icom ?pS-name ? input ?p)

(child5-icom ?pb-name ? input ?c)
(test (!= ?p ?c))

(if (> ?p ?c)
then
(bind ?pd (- ?p ?c))

(printout t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)

(printout t " of parent activity " ?pS-name " is " ?pd " input(s) more " crlf)
(printout t " than its child activities." crlf)

(printout t " Are there ''consists of'' data items at boundary?" crlf)

(printout t " Please recheck the syntax." crlf)

C-44

else

(bind ?cd (- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)

(printout t " of the parent activity " ?pS-name " is " ?cd " input(s) less " crlf)

(printout t " than its child boundary inputs." crlf)

(printout t " Are there "consists of" data items at boundary?" crlf)

(printout t " Please recheck the syntax." crlf)

(defrule check-parent-Schild-mech

(declare (salience -6))
(parentS-icom ?pS-name ? mech ?p)

(childS-icom ?pS-name ? mech ?c)

(test (!= ?p ?c))

(if (> ?p ?c)
then

(bind ?pd (- ?p ?c))
(printout t "WARNING, there might be an ERROR: The number of boundary mechanisms" crlf)

(printout t " of parent activity " ?pS-name " is " ?pd " mechanism(s) more " crlf)

(printout t " than its child activities." crlf)
(printout t " Are there ''consists of'' data items at boundary?" crlf)

(printout t " Please recheck the syntax." crlf)

else

(bind ?cd (- ?c ?p))

(printout t "WARNING, there might be an ERROR: The number of boundary mechanisms" crlf)
(printout t " of the parent activity " ?pS-name " is " ?cd " mechnaism(s) less " crlf)

(printout t " its child child boundary mechanisms." crlf)

(printout t " Are there ''consists of" data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

This rule will create the boundary facts for activities having

6 child diagrams.

(defrule parent-6child

(declare (salience 100))

?fl<-(act-has-child ?parent6 ?childl&null)
?f2<-(act-has-child ?parent6 ?child2&-?childl&-null)
?f3<-(act-has-child ?parent6 ?child3&-?child2&-?childi&-null)
?f4<-(act-has-child ?parent6

?child4&-?child3&'-child2&'?childl&null)

?fS<-(act-has-child ?parent6
?childS& ?child4&-?child3&-?child2&-?childl&Tnull)

?f6<-(act-has-child ?parent6

C-45

?child6&-?child5&-?child4&-?child3&?child2&-?childi&-null)
(not (act-has-child ?parent6

?child7k-?child6&-?child5&-?child4&-?child3&-?child2& ?childl&Thull))

(retract ?f 1 Mf2 i ?f4 Mf ?f 6)
(assert (parent6 ?parent6 ?childi ?child2 ?child3 ?child4

?childS ?child6))

(def rule parent6-boundary
(parent6 ?parent6 ?childl ?child2 ?child3 ?child4 ?child5 ?child6)
(icoin-tuple ?parent6 ?p-data ?p-rel ?)

(assert (parent6-boundary ?parent6 ?p-data ?p-rel))

(def rule child6-boundary-childi
(parent6 ?parent6 ?childl ?child2 ?child3 ?child4 ?child5 ?child6)

(icom-tuple ?childl ?cl-data ?ci-rel ?)

(assert (child6-boundary ?parent6 ?childi ?cl-data ?ci-rel))

(def rule child6-boundary-child2
(parent6 ?parent6 ?childl ?child2 ?child3 ?child4 ?childS ?child6)
(icom-tuple ?child2 ?c2-data ?c2-rel ?)

(assert (child6-boundary ?parent6 ?child2 ?c2-data ?c2-rel))

(def rule child6-boundary-child3
(parent6 ?parent6 ?childl ?child2 ?child3 ?child4 ?childS ?child6)

(icom-tuple ?child3 ?c3-data ?c3-rel ?)

(assert (child6-boundary ?parent6 ?child3 ?c3-data ?c3-rel))

(def rule child6-boundary-child4
(parent6 ?parent6 ?childl ?child2 ?child3 ?child4 ?child5 ?child6)
(icom-tuple ?child4 ?c4-data ?c4-rel ?)

(assert (child6-boundary ?parent6 ?child4 ?c4-data ?c4-rel))

(del rule child6-boundary-childS

(parent6 ?parent6 ?childl ?child2 ?child3 ?child4 ?child5 ?child6)

(icom-tuple ?childS ?cS-data ?c5-rel ?)

(assert (child6-boundary ?parent6 ?childS ?c5-data ?cS-rel))

C-416

(defrule child6-boundary-child6
(parent6 ?parent6 ?childi ?child2 ?child3 ?child4 ?child5 ?child6)
(icom-tuple ?child6 ?c6-data ?c6-rel ?)

(assert (child6-boundary ?parent6 ?child6 ?c6-data ?c6-rel))

These rules will clear the duplicated boundary facts in the facts
created by the previous rule.
CONDITION:

1. 5 activities out of 6 sharing a same data
2. 4 activities out of 6 sharing a same data
3. 3 activities out of 6 sharing a same data
4. 2 activities out o~f 6 sharing a same data
S. all 6 activities are sharing a same data

element but with different icom code
Condition I and 5 is not likely to happen, so it is not implemented

(def rule clear-6child-4mid
?fl<-(child6-boundary ?parent6 ?childi ?ci-data ?cl-rel)
?f<-(child6-boundary ?parent6 ?child2&-?childi ?cl-data ?c2-rel&-?cl-rel)
?f<-(child6-boundary ?parent6 ?child3&-?child2&"?childi ?%A-data

?c3-rel&-?c2-rel&-?cl-rel)
?f4<-(child6-boundary ?parent6 ?child4&-?child3&-?child2&-?child1 ?cl-data ?c4-,. J)

(test (or (and (neq ?c4-rel ?cl-rel)
(neq ?c4-rel ?c2-rel)
(eq ?c4-rel ?c3-rel.))

(and (eq ?c4-rel ?cl-rel)
(neq ?c4-rel ?c2-rel)
(neq ?c4-rel ?c3-rel))

(and (neq ?c4-rel ?cl-rel)
(eq ?c4-rel ?c2-rel)
(neq ?c4-rel ?c3-rel)))

(retract ?fl)
(retract ?f2)
(retract Mf)
(retract ?f4)

(def rule clear-6child-3mid
?fl<-(child6-boundary ?parent6 ?childl ?cl-data ?ci-rel)
?f<-(child6-boundary ?parent6 ?child2&-?childl ?cl-data ?c2-rel&-?cl-rel)

C-47

?f<-(child6-boundary ?parent6 ?child3k&?child2k&?childi ?cl-data
?c3-rel&-?c2-rel&-?cl-rel)

(retract ?f 1)
(retract Mf)
(retract Mf)

If a intermediate arrow is the input of one box but also the
output and input of another two boxes. It must be removed before
the arrow between the other boxes been removed.

(def rule clear-6child-2mid-I
(child6-boundary ?parent6 ?childi ?cl-data ?cl-rel)
(child6-boundary ?parent6 ?child2&?childl ?cl-data ?c2-rel&?cl-rel)
?fl1<- (child6-boundary ?parent6 ?child3&?child2k&?childl ?cl-data ?c3-rel)
(test (or (eq ?c3-rel ?c2-rel)

(eq ?c3-rel ?cl-rel)))

(retract ?fi)

(def rule clear-6child-2mid
(declare (salience -1))

?fl<-(child6-boundary ?parent6 ?childi ?cl-data ?cl-rel)
?f2-(child6-boundary ?parent6 ?child2&-?childl ?ci-data ?c2-rel&C?cl-rel)

(retract ?f 1)
(retract Mf)

(defrule remove-6child-4boundary
(child6-boundary ?parent6 ?childi ?cl-data ?cl-rel)
?f 2<- (child6-boundary ?parent6 ?child2&?childi ?cl-data ?cl-rel)
?f 3<- (child6-boundary ?parent6 ?child3&?child2&?childl ?cl-data ?cl-rel)
?f 4<- (child6-boundary ?parent6 ?child4&?child3&-?child2&-?childl ?cl-data ?cl-rel)

(retract ?f 2 Mf ?f4)

(def rule remove-6child-3boundary
(child6-boundary ?parent6 ?childi ?cl-data ?cl-rel)
?f 2<- (child6-boundary ?parentO ?child2&-?childl ?cl-data ?cl-rel)

C-48

?f 3<- (child6-boundary ?parent6 ?child3&-?child2&-?childi ?cl-data ?ci-rel)

(retract Mf 2M)

(defrule remove-6child-2boundary
Cchild6-boundary ?parent6 ?childi ?ci-data ?cI-rel)

?f<-(child6-boundary ?parent6 ?child2&-?childi ?ci-data ?ci-rel)

(retract ?f 2)

-- - - - - - - -- - - - - - - - - - - - - - - - - - - -

(def rule rid-6child-3consists
?fi<-(child6-boundary ?parent6 ?childi ?ci-data ?cl-rel)
?f<-(child6-boundary ?parent6 ?child2&-?childi ?c2-data&-?ci-data ?c2-rel)
?f <- Cchild6-boundary ?parent6 ?child3&-?child2&-?childi

?c3-d:ta&'?c2-data&-?c1-data ?c3-rel)
?f4<-(child6-boundary ?parent6 ?child-p&-?child3&-?child2&-?childI

?cp-data&-?c3-data&-?c2-data&-?ci-data ?cp-rel&2?c3-rel&-?c2-rel&-?c-rl)
(consists-of-name ? ?cp-data ?c3-data)
(consists-of-name ? ?cp-data ?c2-data)
(consists-of-name ? ?cp-data ?ci-data)

(retract ?f 1)
(retract ?f 2)
(retract Mf)
(retract ?f 4)

(defrule rid-6child-2consists
(declare (salience -1))

?fl<-(child6-boundary ?parent6 ?childi ?cl-data ?cl-rel)
?f<-(child6-boundary ?parent6 ?child2&-?childi ?c2-data&-?ci-data ?c2-rel)
?f<-(child6-boundary ?parent6 ?child-p&-?child2&-?childl

?cp-data&-?c2-data&-?cl-data ?cp-rel&-?c2-rel&-?cl-rel)
(consists-of-name ? ?cp-data ?c2-data)
(consists-of-name ? ?cp-data ?cl-data)

(retract ?fI ?f2 ?f3)

This rule check a parent activity with 6 child diagram to see if
there are any boundary data belonging to the parent but not a part of
the child diagrams.

C-49

(defrule check-6child-parent
(declare (salience -5))
(parent6-boundary ?p-name ?p-data ?p-rel)
(not (consists-of-name ? ?p-data ?c-data))
(not (child6-boundary ?p-name ?child6 ?p-data ?c6-rel))

(printout t "ERROR: Data inconsistency between parent activity
"?p-name " data (" ?p-rel "' " ?p-data " and its child

diagrams." crlf)
(assert (syntax-error-occurred)))

(defrule check-6child-parent-consists
(declare (salience -6))
(parent6-boundary ?p-name ?p-data ?p-rel)
(consists-of-name ? ?p-data ?c-data)

(not (child6-boundary ?p-name ?child6 ?c-data ?c6-rel))

(printout t "ERROR: Data inconsistency between parent activity

"?p-name " data "' ?p-rel "' " ?p-data " and its child
diagrams." crlf)

(assert (syntax-error-occurred))
)

This rule checks if a parent with 6 child diagrams that
some of them have the same boundary data element but
with different icom relation in contrast with their parent.

Then it is an icom ERROR.

(defrule check-6child-icom
(declare (salience -5))

(parent6-boundary ?p-name ?p-data ?p-rel)
(child6-boundary ?p-name ?c-name ?p-data ?c-rel)

(test (neq ?p-rel ?c-rel))

(printout t "ERROR: icom inconsistency between activity
?p-name " and its child diagram

?c-name ." crlf)

(assert (syntax-error-occurred))
)

This rule checks if a parent have 6 child, and there is some
boundary data element in the child diagrams
but can't find the same data in their parent, then inconslstency

happened.

C-50

(def rule check-6child-child
(declare (salience -5))
(child6-boundary ?p-name ?c-nanie ?c-data ?c-rel)
(not (consists-of-name ? ?p-data ?c-data))
(not (parent6-boundary ?p-name ?c-data ?p-rel))

(printout t "ERROR: Data inconsistency between child activity
1?c-name " data ' ?c-rel "'"?c-data "1 and its

parent." crlf)
(assert (syntax-error-occurred))

Parent with 6 child diagrams

The initial icom number was build up by this rule,

(defrule parent6-icom-c
(declare (salience -2))
(parent6-boundary ?p6-name ?p6-data c)

(assert (parent6-icom ?p6-name ?p6-data control 1))

(defrule parent6-icom-o
(declare (salience -2))
(parent6-boundary ?p6-name ?p6-data o)

(assert (parent6-icom ?p6-name ?p6-data output 1))

(def rule parent6-icom-i
(declare (salience -2))
(parent6-boundary ?p6 name ?p6-data i)

(assert (parent6-icom ?p6-name ?p6-data input 1))

(def rule parent6-icom-m
(declare (salience -2))
(parent6-boundary ?p6-name ?p6-data m)

(assert (parent6-icom ?p6-name ?p6-data mech1)

C-51I

(defrule parent6-control-add
(declare (salience -3))
?fl<-(parent6-icom ?p6-name ?datal control ?one)
?f2<-(parent6-icom ?p6-name ?data2 control ?n)
(test (neq ?datal ?data2))

(retract Mi1 ?M2)
(bind ?total (+ ?one ?n))
(assert (parent6-icom ?p6-name =(gensym) control ?total))
)

(defrule parent6-output-add
(declare (salience -3))
?fl<-(parent6-icom ?p6-name ?datal output ?one)
722<-(parent6-icom ?p6-name ?data2 output ?n)
(test (neq ?datal ?data2))

(retract ?fM ?f2)
(bind ?total (+ ?one ?n))
(assert (parent6-icom ?p6-name =(gensym) output ?total))
)

(defrule parent6-input-add
(declare (salience -3))
?fl<-(parent6-icom ?p6-name ?datal input ?one)
?f2<-(parent6-icom ?p6-name ?data2 input ?n)
(test (neq ?datal ?data2))

(retract ?f1 ?f2)
(bind ?total (+ ?one ?n))
(assert (parent6-icom ?p6-name =(gensym) input ?total))
)

(defrule parent6-mech-add
(declare (salience -3))
?f1<-(parent6-icom ?p6-name ?datal mech ?one)
?f2<-(parent6-icom ?p6-name ?data2 mech ?n)
(test (neq ?datal ?data2))

(retract ?f1 ?f2)
(bind ?total (+ ?one ?n))
(assert (parent6-icom ?p6-name =(gensym) mech ?total))

)

C-52

(defrule child6-icom-c
(declare (salience -2))
(child6-boundary ?c6-parent ?c6-name ?c6-data c)

(assert (child6-icom ?c6-parent ?c6-data control 1))

(def rule child6-icom-o
(declare (salience -2))
(cbild6-boundary ?c6-parent ?c6-name ?c6-data o)

(assert (child6-icom ?c6-parent ?c6-data output 1))

(defrule child6-icom-i
(declare (salience -2))
(child6-boundary ?c6-parent ?c6-nane ?c6-data i)

(assert (child6-icon ?c6-parent ?c6-data input 1))

(defrule child6-icom-m
(declare (salience -2))
(child6-boundary ?c6-parent ?c6-nane ?c6-data m)

(assert (child6-icom ?c6-parent ?c&-data mech 1))

-- -- - - - - - - - - - - - - - - - - - -

(def rule child6-control-add
(declare (salience -3))
?fl<-(child6-icom ?c6-parent ?datal control ?one)
?i2<-(child6-icom ?c6-parent ?data2 control ?n)
(test (neq ?datal ?data2))

(retract Mf M)
(bind ?total (+ ?one Wn)
(assert (child6-icom ?c6-parent =(gensyi) control ?total))

-- - - - - - -- - - - - - - - - - - - - -

(del rule child6-output-add
(declare (salience -3))
?fi<-(child6-icom ?c6-parent ?datai output ?one)
?f2<-(child6-icom ?c6-parent ?data2 output ?n)
(test (neq ?datal ?data2))

C-53

(retract ?fM ?M2)
(bind ?total (+ ?one ?n))
(assert (child6-icom ?c6-parent =(gensym) output ?total))

)

(defrule child6-input-add
(declare (salience -3))

?f1<-(child6-icom ?c6-parent ?datal input ?one)
?M2<-(child6-icom ?c6-parent ?data2 input ?n)
(test (neq ?datai ?data2))

(retract ?fM ?M2)
(bind ?total (+ ?one ?n))
(assert (child6-icom ?c6-parent =(gensym) input ?total))

)

(defrule child6-mech-add

(declare (salience -3))
?fl<-(child6-icom ?c6-parent ?datal mech ?one)
?f2<-(child6-icom ?c6-parent ?data2 mech ?n)
(test (neq ?datal ?data2))

(retract ?fM ?f2)
(bind ?total (+ ?one ?n))
(assert (child6-icom ?c6-parent =(gensym) mech ?total))
)

; Check Parent with 6 child boundary icom number consistancy

(defrule check-pa7 ent-6child-control
(declare (salience -6))

(parent6-icom ?p6-name ? control ?p)
(child6-icom ?p6-name ? control ?c)
(test (!= ?p ?c))

(if (> ?p ?c)
then
(bind ?pd (- ?p ?c))
(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)

(printout t of parent activity "?p6-name" is "?pd" control(s) more than " crlf)

(printout t " its child activities." crlf)
(printout t " Are there ''consists of'' data items at boundary?" crlf)

C-54

(printout t " Please recheck the syntax." crlf)

else

(bind ?cd (- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary controls" crlf)

(printout t " of the parent activity "?p6-name" is "?cd" control(s) less " crlf)

(printout t " than its child boundary controls." crlf)
(printout t " Are there "consists of" data items at boundary?" crlf)
(printout t Please recheck the syntax." crlf)

(defrule check-parent-6child-output
(declare (salience -6))
(parent6-icom ?p6-name ? output ?p)
(child6-icom ?p6-name ? output ?c)
(test (!= ?p ?c))

(if (> ?p ?c)
then

(bind ?pd (- ?p ?c))
(printout t "WARNING, there might be an ERROR: The number of boundary outputs" crlf)

(printout t " of parent activity " ?p6-name " is " ?pd " output(s) more " crlf)

(printout t " than its child activities." crlf)
(printout t " Are there ''consists of'' data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

else
(bind ?cd (- ?c ?p))

(printout t "WARNING, there might be an ERROR: The number of boundary outputs" crlf)
(printout t " of the parent activity " ?p6-name " is " ?cd " output(s) less " crlf)

(printout t " than its child boundary outputs." crlf)
(printout t " Are there ''consists of'' data items at boundary?" crlf)

(printout t " Please recheck the syntax." crlf)

(defrule check-parent-6child-input
(declare (salience -6))
(parent6-icom ?p6-name ? input ?p)
(child6-icom ?p6-name ? input ?c)
(test (!= ?p ?c))

(if (> ?p ?c)
then
(bind ?pd (- ?p ?c))

(printout t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)

(printout t " of parent activity " ?p6-name " is " ?pd " input(s) more " crlf)

(printout t " than its child activities." crlf)
(printout t " Are there ''consists of'' data items at boundary?" crlf)

(printout t " Please recheck the syntax." crlf)

else
(bind ?cd (- ?c ?p))

(printout t "WARNING, there might be an ERROR: The number of boundary inputs" crlf)

C-55

(printout t " of the parent activity " ?pd-r.ame " is " ?cd " input(s) less " crlf)

(printout t " than its child boundary inputs." crlf)
(printout t " Are there "consists of'' data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

(defrule check-parent-6child-mech
(declare (salience -6))
(parent6-icom ?p6-name ? mech ?p)
(child6-icom ?p6-name ? mech ?c)
(test (!= ?p ?c))

(if (> ?p ?c)
then
(bind ?pd (- ?p ?c))
(printout t "WARNING, there might be an ERROR: The number of boundary mechanisms" crlf)

(printout t " of parent activity " ?p6-name " is " ?pd " mechanism(s) more " crlf)
(printout t " than its child activities." crlf)
(printout t " Are there ''consists of'' data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)
else
(bind ?cd (- ?c ?p))
(printout t "WARNING, there might be an ERROR: The number of boundary mechanisms" crlf)
(printout t " of the parent activity " ?p6-name " is " ?cd " mechnaism(s) less " crlf)
(printout t " its child child boundary mechanisms." crlf)
(printout t " Are there ''consists of,, data items at boundary?" crlf)
(printout t " Please recheck the syntax." crlf)

Auxiliary Rules for checking any parent activity that have more than
;; six child activities up to 3 levels of hierarchy.

(defrule create-A7

(declare (salience 5))
(act-numb ?acta7 A7)

(assert (act ?acta7 7))
)

(defrule create-A17
(declare (salience 5))

(act-numb ?acta17 A17)

(assert (act ?actal7 1 7))
)

(defrule create-A27

C-56

(declare (salience 5))
(act-numb ?acta27 A27)

(assert (act ?acta27 2 7))

(def rule create-A37
(declare (salience 5))
(act-numb ?acta37 A37)

(assert (act ?acta37 3 7)

(defrule create-A47
(declare (salience 5))
(act-numb ?acta47 A47)

(assert (act ?acta47 4 7))

(del rule create-A57
(declare (salience 5))
(act-numb ?acta57 A57)

(assert (act ?acta57 5 7))

(defrule create-A67
(declare (salience 5))
(act-numb ?acta67 A67)

(assert (act ?acta67 6 7))

(defrule create-A117
(declare (salience 5))
(act-numb ?actall7 A117)

(assert (act ?actall7 1 1 7))

(del rule create-A127
(declare (salience 5))
(act-numb ?acta127 A127)

(assert (act ?actal27 1 2 7))

(defrule create-A137
(declare (salience 5))
(act-numb ?acta137 A137)

C-57

(assert (act ?acta137 1 3 7))
)

(defrule create-A147
(declare (salience 5))
(act-numb ?acta147 A147)

(assert (act ?acta147 1 4 7))
)

(defrule create-AIS7
(declare (saliencA 5))
(act-numb ?acta157 A157)

(assert (act ?acta157 1 5 7))
)
(defrule create-A167

(declare (salience 5))
(act-numb ?acta167 A167)

(assert (act ?acta167 1 6 7))
)

(defrule create-A217
(declare (salience 5))
(act-numb ?acta217 A217)

(assert (act ?acta217 2 1 7))
)

(defrule create-A227
(declare (salience .))
(act-numb ?acta227 A227)

(assert (act ?acta227 2 2 7))
)

(defrule create-A237
(declare (salience 5))
(act-numb ?acta237 A237)

=>

(assert (act ?acta237 2 3 7))
)

(defrule create-A247
(declare (salience 5))
(act-numb ?acta247 A247)

(assert (act ?acta247 2 4 7))
)

G-58

(defrule create-A257
(declare (salience 5))
(act-numb ?acta257 A257)

(assert (act ?acta257 2 5 7))
)

(defrule create-A267
(declare (salience 5))
(act-numb ?acta267 A267)

(assert (act ?acta267 2 6 7))
)
(defrule create-A317

(declare (salience 5))
(act-numb ?acta317 A317)

(assert (act ?acta317 3 1 7))
)

(defrule create-A327
(declare (salience 5))
(act-numb ?acta327 A327)

(assert (act ?acta327 3 2 7))
)

(defrule create-A337
(declare (salience 5))
(act-numb ?acta337 A337)

(assert (act ?acta337 3 3 7))
)

(defrule create-A347
(declare (salience 5))
(act-numb ?acta347 A347)

(assert (act ?acta347 3 4 7))
)

(defrule create-A357
(declare (salience 5))
(act-numb ?acta357 A357)

(assert (act ?acta357 3 5 7))
)

(defrule create-A367
(declare (salience 5))
(act-numb ?acta367 A367)

C-59

(assert (act ?acta367 3 6 7))

(def rule create-A417
(declare (salience 5))
(act-numb ?acta417 A417)

(assert (act ?acta417 4 1 7))

(def rule create-A427
(declare (salience 5))
(act-numb ?acta427 A427)

(assert (act ?acta427 4 2 7))

(def rule create-A437
(declare (salience S))
(act-numb ?acta437 A437)

(assert (act ?acta437 4 3 7))

(defrule create-A447
(declare (salience S))
(act-numb ?acta447 A447)

(assert (act ?acta447 4 4 7))

(defrule create-A457
(declare (salience 5))
(act-numb ?acta457 A457)

(assert (act ?acta457 4 5 7))

(def rule create-A467
(declare (salience 5))
(act-numb ?acta467 A467)

(assert (act ?acta467 4 6 7))

(defrule create-A517
(declare (salience 5))
(act-numb ?actaS17 A517)

(assert (act ?acta517 5 1 7))

C-60

(defrule create-A527
(declare (salience 5))
(act-numb ?acta527 A527)

(assert (act ?actaS27 5 2 7))
)
(defrule create-A537

(declare (salience 5))
(act-numb ?acta537 A537)

(assert (act ?acta537 5 3 7))
)

(defrule create-A547
(declare (salience 5))
(act-numb ?acta547 A547)

(assert (act ?acta547 5 4 7))
)

(defrule create-A557
(declare (salience 5))
(act-numb ?actaS57 A557)

(assert (act ?acta557 5 5 7))
)

(defrule create-AS67
(declare (salience 5))
(act-numb ?acta567 A567)

(assert (act ?acta567 5 6 7))
)

(defrule create-A617
(declare (salience 5))
(act-numb ?acta617 A617)

(assert (act ?acta617 6 1 7))
)
(defrule create-A627

(declare (salience 5))
(act-numb ?acta627 A627)

(assert (act ?acta627 6 2 7))
)

(defrule create-A637
(declare (salience 5))
(act-numb ?acta637 A637)

C-61

(assert (act ?acta63l 6 3 7))

(def rule create-A647
(declare (salience S))
(act-numb ?acta647 A647)

(assert (act ?acta647 6 4 7))

(del rule create-A657
(declare (salience 5))
(act-numb ?acta657 A657)

(sert (act ?acta657 6 5 7))

(defrule create-A667
(declare (salience 5))
(act-numb ?acta667 A667)

(assert (act ?acta667 6 6 7))

EN)FSto I UEBS

C- 62

Appendix D. SAMPLE ESSENTIAL MODEL IDEFo SYNTAX CHECKING

SCRIPT FILE

NOTICE: Any comments added by the author will be followed by a';'.

csh> a.out
CLIPS/Ada Version 4.30 10/12/89

* THE ESSENTIAL SUBSYSTEM *
* TEST AND DEMONSTRATION MAIN MENU *
* -- SAtool I Level Operations -- *

Enter To select the desired operation
1. Restore (load) a project from disk

(Warning: all current data cleared)
2. Save the current project to disk
3. Display the current project name
4. Change the current project name
S. Create and display a data dictionary entry
6. Add a box/activity to the project
7. Connect 2 boxes with a data element/arrow
8. Check Syntax of current project
9. -- Submenus for Low Level Operations --
0. EXIT

SELECT A NUMBER: 1
Enter the file name of the project to be restored.
Do not include the file name extension.
Enter Name: thesis-err

Looking for essential data under file name: thesis-err.esm
Preparing to read facts from disk into a buffer.
A set of facts has been extracted from the file.
Calling procedure to load icom facts.
Procedure to restore ICOM facts done.
A set of facts has been extracted from the file.
Calling procedure to load project name fact.
Procedure to restore project name is done.
A set of facts has been extracted from the file.
Calling procedure to load activity facts.
Procedure to restore activity facts is done.
A set of facts has been extracted from the file.
Calling procedure to load data element facts.
Procedure to restore data element facts is done.
A set of facts has been extracted from the file.
Calling procedure to load historical activity facts.

D-I

Procedure to restore historical activity facts is done.
A set of facts has been extracted from the file.
Calling procedure to load calls relation facts.
Procedure to restore calls relation facts is done.
A set of facts has been extracted from the file.
Calling procedure to load consista of relation facts.
Procedure to restore consists of relation facts is done.
Project successfully restored.

PRESS ANY KEY - THEN RETURN TO CONTINUE: 1

*THE ESSENTIAL SUBSYSTEM
*TEST AND DEMONSTRATION MAIN MENU
* -- SAtool II Level Operations --

Enter To select the desired operation
1. Restore (load) a project from disk

(Warning: all current data cleared)
2, Save the current project to disk
3. Display the current project name
4. Change the current project name
S. Create and display a data dictionary entry
6, Add a box/activity to the project
7. Connect 2 boxes with a data element/arrow
8. Check Syntax of current project
9. -- Submenus for Low Level Operations --
0. EXIT

SELECT A NUMBER: 9

* ESSENTIAL SUBSYSTEM EDITING AND DEBUGGING MENU
* Warning: These operations allow you to directly
* exercise the object operations. Use extreme care.*
* --Essential Model and Utility Level Operations--

Enter To select the desired submenu of operations
1. Activity Operations Menu
2. Data Element Operations Menu
3. Historical Activity Operations Menu
4. Calls Relation Operations Menu
S. ICOM Relation Operations Menu

6. Consists-Of Relation Operations Menu
7 CLIPS Operations Menu
8. ICOM Fact Operations Menu
9. Activity Fact Operations Menu
0. EXIT

SELECT A NUMBER: 7

Enter To select this operation

D-2

i. Assert all facts into the CLIPS Working Memory.
2. Display all the facts in CLIPS Working Memory.
3. Clear the CLIPS Working Memory.
0. EXIT

SELECT A NUMBER: I
ICOM facts for CLIPS retrieved, if any.
CLIPS WM - a set of facts were asserted.
Project name fact retrieved.
CLIPS WM - a set of facts were asserted
Activity facts for CLIPS retrieved, if any.
CLIPS WM - a set of facts were asserted.
Data element facts for CLIPS retrieved, if any.
CLIPS WM - a set of facts were asserted.
Historical facts for CLIPS retrieved, if any.
CLIPS WM - a set of facts were asserted.
Calls relation facts for CLIPS retrieved, if any.
CLIPS WM - a set of facts were asserted,
Consists of relation facts for CLIPS retrieved, if any.
CLIPS WM - a set of facts were asserted.
All facts for CLIPS retrieved.

PRESS ANY KEY - THEN RETURN TO CONTINUE: 1

Enter To select this operation
1. Assert all facts into the CLIPS Working Memory.
2. Display all the facts in CLIPS Working Memory.
3. Clear the CLIPS Working Memory.
0. EXIT

SELECT A NUMBER: 2

Notice: Each fact is assigned a fact number, f-#.
There are 753 facts. Only one set of facts are kept here

as an example.

*********Start of Working Memory********.
f-i (icom-tuple ControlElevator summons_indication c 1)
f-2 (icom-tuple Control_Elevator floorsensor c 2)
f-3 (icom-tuple Control_Elevator doorsensor c 3)
f-4 (icom-tuple Control-Elevator system-control c 4)
f-S (icom-tuple Control_Elevator control-signals o 5)
f-6 (icom-tuple Control-Elevator passenger-requests i 7)
f-7 (icom-tuple Control_Elevator overloadsensor i 8)
f-8 (icom-tuple Control_Elevator floormotordrive m 9)
f-9 (icom-tuple Control_Elevator doormotor_drive m 10.99999999)

f-74 (icom-activity-inputs Control-Elevator 2)
f-75 (icom-activity-controls Control-Elevator 4)
f-76 (icom-activity-outputs Control-Elevator 1)

D-3

f-77 (icom-activity-mechanisms Control-.Elevator 2)

f-168 (proj ect-name Control-.Elevator)
1-159 (act-name Contro...Elevator)
1-160 (act-numb Control-Elevator AO)
f-161 (act-desc Control-.Elevator not-null)
f-162 (act-has-child Control-Elevator Store-Request)
f-163 (act-has-child Control-Elevator Elevator-.Control)
f-164 (act-has-child Control_.Elevator Schedule.Elevator)
f-16S (act-ref-type Control-.Elevator null)
f-166 (act-ref Control-.Elevator null)
f-167 (act-version Control-.Elevator null)
1-168 (act-ver-chg Control-Elevator null)
1-169 (act-date Control-.Elevator null)
f-170 (act-author Control-Elevator null)

f-384 (data-element-name summons..indication)
f-385 (data-element-type summons-.indication null)
1-386 (data-element-minimum summons-indication null)
f-387 (data-element-maximum summons-~indication null)
1-388 (data-element-data-range sumimons-.indication null)
f-389 (data-element-values summons-.indication null)
f-390 (data-desc summons-indication not-null)
f-391 (data-ref summons-.indication null)
f-392 (data-ref-type sumonsindication null)
f-393 (data-ele-ver summons-.indication null)
f-394 (data-e-v-chg summons-.indication null)
f-395 (data-ele-date summons-.indication null)
f-396 (data-ele-author summons-.indication null)

f-748 (historical-tuple Control-Elevator AO)
f-749 (calls-relation-tuple Building-Transport Building-Structure All)
1-760 (consists-of-name 1 elevator-.status up/down)
f-751 (consists-of-name 2 elevator-.status stopped)
1-752 (consists-of-name 6 sequenced-signals earlier-.signals)
f-753 (consists-of-name 7 sequenced-signals later-signals)
**********End of Working Memory********

PRESS ANY KEY - THEN RETURN TO CONTINUE: 1

Enter To select this operation
1. Assert all facts into the CLIPS Working Memory.
2. Display all the facts in CLIPS Working Memory.
3. Clear the CLIPS Working Memory.
0. EXIT

SELECT A NUMBER: 0

PRESS ANY KEY - THEN RETURN TO CONTINUE: 1

DA4

* ESSENTIAL SUBSYSTEM EDITING AND DEBUGGING MENU
* Warning: These operations allow you to directly *
* exercise the object operations. Use extreme care.*
* --Essential Model and Utility Level Operations--

Enter To select the desired submenu of operations
1. Activity Operations Menu
2. Data Element Operations Menu
3. Historical Activity Operations Menu
4. Calls Relation Operations Menu
5. ICOM Relation Operations Menu
6. Consists-Of Relation Operations Menu
7 CLIPS Operations Menu
8. ICOM Fact Operations Menu
9. Activity Fact Operations Menu
0. EXIT

SELECT A NUMBER: 0

PRESS ANY KEY - THEN RETURN TO CONTINUE: 1

* THE ESSENTIAL SUBSYSTEM
* TEST AND DEMONSTRATION MAIN MENU *
* -- SAtool II Level Operations --

Enter To select the desired operation
1. Restore (load) a project from disk

(Warning: all current data cleared)
2. Save the current project to disk
3. Display the current project name
4. Change the current project name
5. Create and display a data dictionary entry
6. Add a box/activity to the project
7. Connect 2 boxes with a data element/arrow
8. Check Syntax of current project
9. -- Submenus for Low Level Operations --

0. EXIT
SELECT A NUMBER: 8
ICOM facts for CLIPS retrieved, if any.
CLIPS WM - a set of facts were asserted.
Project name fact retrieved.
CLIPS WM - a set of facts were asserted.
Activity facts for CLIPS retrieved, if any.
CLIPS WM - a set of facts were asserted.
Data element facts for CLIPS retrieved, if any.
CLIPS WM - a set of facts were asserted.
Historical facts for CLIPS retrieved, if any.
CLIPS WM - a set of facts were asserted.
Calls relation facts for CLIPS retrieved, if any.

D-5

CLIPS WH - a set of facts were asserted.

Consists of relation facts for CLIPS retrieved, if any.
CLIPS WM - a set of facts were asserted.

**** Essential Subsystem Syntax Checking Messages ****
===> The project == Control-Elevator == is checked as follows:

ERRORS are related. If a parent activity can't find
a boundary arrow in its child activities boundaries, that
means its child activities can't also find a boundary arrow
from its parent activity. Two ERRORS will be raised
for both the parent and child activities. Thus, a midle
level data error will raise 4 ERROR messages. Since there
are two sets of parent and child activities.

A set of same IDEFO figures as described in chapter II
MARKED with DESIGNED ERRORS is listed below. Inconsistent
data input are marked with a no, not or a false
preceeding the data name.

**** Essential Subsystem Syntax Checking Messages ****

==> The project == Control-Elevator == is checked as follows:

Waring: activity A2 has more than 6 child diagrams.
Notice: Please manually check to make sure that there is no

such an warning lower that 4 levels of hierarchy.
; Activity A27

WARNING: Activity number A265 Send-Signals needs a
description.

ERROR: Activity Check-Destination needs at least I control.
; Activity A21 should'nt have two input

ERROR: Data inconsistency between parent activity
Sort-Signals data 'o' false-signals and its child
diagrams.

; Parent A26 output

ERROR: Data inconsistency between child activity
Send-Signals data 'o' signals and its

parent.

Child A26 output

ERROR: Data inconsistency between child activity
Compare-Signals data 'c' not-confirmed and its
parent.

D-6

iaen AaMore General
Parent A-0 ,

A.ctivity t\

ChildX

Activities
More Detail

2

3

~' O ~A27 -A2 has 7

7 ii icorn errorcil

xl

A1

AlA26

/\

A265 has no dAsc

Figuire D.M. Hierarchy Diagram for 'Control Elevator'

D-7

AUTHOR: Min-fuh Shyong DATE: 2/26/91 READER:

PROJECT: Control Elevator REV: 1.0 DATE:

summons indication

floor sensor

door scnsor

system control

passenger

requests Control control signal

Elevator
overload

scnsor

door motor drive

floor motor drive

NODE: A-0 TITLE: Control Elevator NUMBER:

Figure D.2. A-0 Essential Model Diagram for 'Control Elevator'

D-8

AUTHOR: Min-fuh Shyong DATE: 2/26/91 READER:

PROJECT: Control Elevator REV: 1.0 DATE:

summons indication

' no-floor sensor
passenger Store

Request

reuet 1 door sensor

received system control

request Elevatorsi nl

Control

2i

overload sensor Schedule control

Elevator

3 signals

floor motor dir
rvdor

motor drivedrive

NODE: AO TITLE: Schedule Elevator NUMBER:

Figure D.3. AO Diagram for 'Control Elevator'

D-9

AUTHOR: Min-fuh Shyong DATE: 2/26/91 READER:

PROJECT: Control Elevator REV:, 1.0 DATE:

summons indication

no passenger Manage elevator

NODE: Al TITLE: Manage Request NUMBER:

Figure D.4. Al Diagram for 'Control Elevator'

D-10

AUTHOR: Min-fuh Shyong DATE: 2/26/91 READER:

PROJECT: Control Elevator REV: 1.0 DATE:

summons indication

levator
status I I

destination

up/down Control request Store

no stopped destination request

NODE: A12 TITLE: Display Request NUMBER:

1)I

Figure D.5. A12 Diagram for 'Control Elevator'

I)-1l

AUTHOR: Min-fuh Shyong DATE:02/26/91 READER:

PROJECT: Control Elevator REV:, 1.0 DATE:

indication

Floor motordril

Figrva 36 42Darmfr'oto lvtr

D- 12

AUTHOR: Min-ful Shyong DATE: 02/26/91 READER:

PROJECT: Control Elevator REV: 1.0 DATE:

not confirmed

compared

r sequenced
start/ Compare signals Reorder signals

stop Signals Sequence
11

calner

signals

Backup backed Store later

Signals Sorted -- signals

3 signals4

stored

signals

S ,Send

floor motor drive ignal signals

NODE: A26 TITLE: Sort Signals NUMBER:

Figure ID.7. A26 Diagram for 'Control Elevator'

D- 13

Child A.,1 control

ERROR: Data inconsistency between child activity
ClearDestination data 'i' no-stopped and its
parent.

; Child of A12, A123 pipelined input

ERROR: Data inconsistency between parent activity
Elevator-Control data 'o' signals and its child
diagrams.
; Parent A2 output and A26 output

ERROR: Data inconsistency between parent activity
Elevator-Control data 'c' no-floor-sensor and its child
diagrams.
; Parent A2

ERROR: icom inconsistency between activity Elevator-Control and its
child diagram Check-Destination.
; Parent A2 icom inconsistent with its child

ERROR: Data inconsistency between child activity
Sort-Signals data 'o' false-signals and its
parent.

; A26 output inconsistent with A2 output

ERROR: Data inconsistency between child activity
Monitor-Arrival data 'c' floor-sensor and its
parent.

; A22 control inconsistent with A2

ERROR: Data inconsistency between parent activity
Store-Request data 'i' passenger-requests and its

child diagrams.
; Al input inconsistent with All

ERROR: Data inconsistency between parent activity
Control-Elevator data 'c' floor-sensor and its child
diagrams.

; Parent AO control - A2

ERROR: Data inconsistency between child activity
Elevator-Control data 'c' no-floor-sensor and its
parent.

Child A2 control - AO

Since there are ERRORS occured, so the icom number
between each pair of parent and child activities (no matter

at what level) might be inconsistent. But it might because

of a pipeline data element. So a WARNING will be fired

D-14

; by the syntax checking expert system

WARNING, there might be an ERROR: The number of boundary controls
of the parent activity Sort-Signals is I control(s) less
than its child boundary controls.
Are there "consists of" data items at boundary?
Please recheck the syntax.

WARNING, there might be an ERROR: The number of boundary inputs
of the parent activity Manage-Destination is I input(s) less
than its child boundary inputs.
Are there "consists of'' data items at boundary?
Please recheck the syntax.

WARNING, thers might be an ERROR: The number of boundary controls
of parent activity Elevator-Control is 1 control(s) more than
its child activities.
Are there "consists of" data items at boundary?
Please recheck the syntax.

WARNING, there might be an ERROR: The number of boundary inputs
of the parent activity Elevator-Control is 1 input(s) less
than its child boundary inputs.
Are there "consists of'' data items at boundary?
Please recheck the syntax.

ERROR: Data inconsistency between parent activity
Manage-Destination data 'i' elevator-status and its child
diagrams.
; Parent A12 pipeline data outout, child data inconsistent

Clips run completed. Rules fired = 196

PRESS ANY KEY - THEN RETURN TO CONTINUE:

NOTE: If no errors were found; only a few 'consists of' data
elements are used at boundary. Then the Syntax Expert System

will give the following checking results.

**** Essential Subsystem Syntax Checking Messages ****

==> The project == Control-Elevator == is checked as follows:

WARNING, there might be an ERROR: The number of boundary inputs
of the parent activity Manage-Destination is 1 input(s) less
than its child boundary inputs.
Are there "consists of'' data items at boundary?
Please recheck the syntax.

CONGRATULATIONS: No syntax errors encountered.
SUGGESTION: Please recheck logical structure of your project

for perfection

D-15

Clips run completed. Rules fired = 175

PRESS ANY KEY - THEN RETURN TO CONTINUE: 1

*THE ESSENTIAL SUBSYSTEM
*TEST AND DEMONSTRATION MAIN MENU
* -- SAtool II Level Operations --

Enter To select the desired operation
1. Restore (load) a project from disk

(Warning: all current data cleared)
2. Save the current project to disk
3. Display the current project name
4. Change the current project name
5. Create and display a data dictionary entry
6. Add a box/activity to the project
7. Connect 2 boxes with a data element/arrow
8. Check Syntax of current project
9. -- Submenus for Low Level Operations --

0. EXIT
SELECT A NUMBER: 0
csh> exit
csh>

D-16

